
z/OS

MVS Programming:
Writing Servers
for APPC/MVS

SA22-7620-00

IBM

z/OS

MVS Programming:
Writing Servers
for APPC/MVS

SA22-7620-00

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First Edition, March 2001

This edition applies to Version 1 Release 1 of z/OS (5694-A01), and to subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Notices . ix
Programming Interface Information x
Trademarks . x

About This Book . xiii
Who Should Use This Book . xiii
How to Use This Book . xiii
Where to Find More Information xiv
Using LookAt to look up message explanations xiv
Accessing licensed books on the Web xv

Summary of Changes . xvii

Chapter 1. Introduction . 1-1
Distributed Applications . 1-1

The Client/Server Model . 1-1
Overview . 1-3

APPC/MVS Server Facilities. 1-3
The Allocate Queue . 1-4

Creating an Allocate Queue 1-4
Server Initialization . 1-7
Special Considerations for Authorized Servers 1-8
Related System Functions . 1-8
What the Application Programmer Provides 1-9
What Your Installation Can Provide 1-9

Chapter 2. Using Allocate Queue Services 2-1
Using the Services Asynchronously 2-2
Using JES Services . 2-2
The Basic Server Functions . 2-2

Creating An APPC/MVS Server 2-2
Receiving Inbound Conversations. 2-6
Unregistering For Allocate Requests 2-10
Using Multiple Servers . 2-11

Advanced Server Functions 2-12
Querying the Allocate Queue 2-13
Receiving Notification of Events 2-13
Allowing the Allocate Queue to Persist 2-21

Multi-Tasking Servers . 2-23
Model One — Empowerment 2-23
Model Two — Management-Directed 2-24
Model Three — Unmanaged 2-24
General Considerations for Multi-Tasking Servers 2-25

Managing Protected Conversations. 2-26
Accounting for Server Usage 2-26

Tracking Server-Specific Resources through SMF 2-26
Adding User Data to Accounting Records 2-26

Performance Considerations for Allocate Queue Services 2-27
Installing APPC/MVS Servers 2-27
Diagnosing Problems with APPC/MVS Servers 2-28

© Copyright IBM Corp. 1993, 2001 iii

Chapter 3. Invocation Details for Allocate Queue Services 3-1
Interface Definition Files (IDFs) 3-1

Syntax and Linkage Conventions for Allocate Queue Services 3-1
Parameter Description for Allocate Queue Services 3-2
Required Modules . 3-3
Versions of Callable Services 3-4
Interface Definition Files (IDFs) for APPC/MVS Services 3-4

Chapter 4. APPC/MVS Allocate Queue Services 4-1
Get_Event . 4-1

Environment for Get_Event 4-1
Restrictions . 4-1
Input Register Information 4-1
Output Register Information 4-2
Syntax Format for Get_Event 4-2
Parameters for Get_Event 4-3
Abend Codes for Get_Event. 4-6

Query_Allocate_Queue . 4-6
Environment for Query_Allocate_Queue 4-7
Restrictions . 4-7
Input Register Information 4-7
Output Register Information 4-7
Syntax Format for Query_Allocate_Queue 4-8
Parameters for Query_Allocate_Queue 4-8
Abend Codes for Query_Allocate_Queue 4-11

Receive_Allocate . 4-11
Environment for Receive_Allocate 4-11
Restrictions . 4-12
Input Register Information 4-12
Output Register Information 4-12
Syntax Format for Receive_Allocate 4-12
Parameters for Receive_Allocate 4-13
Abend Codes for Receive_Allocate. 4-17

Register_for_Allocates . 4-18
Environment for Register_For_Allocates 4-18
Restrictions . 4-18
Input Register Information 4-18
Output Register Information 4-19
Syntax Format for Register_For_Allocates 4-19
Parameters for Register_For_Allocates 4-19
Abend Codes for Register_For_Allocates 4-25

Set_Allocate_Queue_Attributes 4-25
Environment for Set_Allocate_Queue_Attributes 4-25
Restrictions . 4-25
Input Register Information 4-26
Output Register Information 4-26
Syntax Format for Set_Allocate_Queue_Attributes 4-26
Parameters for Set_Allocate_Queue_Attributes 4-27
Abend Codes for Set_Allocate_Queue_Attributes 4-28

Set_Allocate_Queue_Notification 4-29
Environment for Set_Allocate_Queue_Notification 4-29
Restrictions . 4-29
Input Register Information 4-29
Output Register Information 4-30
Syntax Format for Set_Allocate_Queue_Notification 4-30
Parameters for Set_Allocate_Queue_Notification. 4-30

iv z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Abend Codes for Set_Allocate_Queue_Notification 4-34
Unregister_For_Allocates . 4-34

Environment for Unregister_For_Allocates 4-34
Restrictions . 4-34
Input Register Information 4-34
Output Register Information 4-35
Syntax Format for Unregister_For_Allocates 4-35
Parameters for Unregister_For_Allocates 4-35
Abend Codes for Unregister_For_Allocates 4-37

Appendix A. Character Sets A-1

Appendix B. Explanation of Return and Reason Codes B-1
Return Codes . B-1
Reason Codes . B-2
Symptom Records for APPC Service Failures B-5

Appendix C. Sample APPC/MVS Server C-1

Appendix D. Sample Client Program D-1

Appendix E. Sample Error Routine and Header File E-1
Header File . E-1

Glossary . F-1

Index . X-1

Contents v

vi z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Figures

1-1. The Client/Server Computing Environment . 1-2
1-2. APPC/MVS Inbound Processing . 1-5
1-3. Flow of Inbound Conversations to a Server Address Space 1-7
2-1. Flow of Inbound Conversations to Multiple Server Address Spaces 2-12
2-2. Relationship Between Allocate Queue and Event Queue 2-15
2-3. Maximum Threshold Reached . 2-17
2-4. Minimum Threshold Reached . 2-18
2-5. Example of a Multi-tasking Server Address Space. 2-24
4-1. Syntax for Get_Event . 4-2
4-2. Syntax for Query_Allocate_Queue . 4-8
4-3. Syntax for Receive_Allocate . 4-13
4-4. Syntax for Register_For_Allocates . 4-19
4-5. Syntax for Set_Allocate_Queue_Attributes 4-26
4-6. Syntax for Set_Allocate_Queue_Notification 4-30
4-7. Syntax for Unregister_For_Allocates . 4-35

© Copyright IBM Corp. 1993, 2001 vii

viii z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2001 ix

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer to design and write APPC/MVS servers.
This book documents General-use Programming Interface and Associated Guidance
Information provided by z/OS.

General-use programming interfaces allow the customer to write programs that
obtain the services of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX
v AS/400
v CICS
v C/370
v IBM
v IBMLink
v IMS
v MVS
v MVS/ESA
v OS/2
v OS/390
v OS/400
v RACF
v Resource Link
v SecureWay
v SP
v VM/ESA
v VTAM
v z/OS

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Notices

x z/OS V1R1.0 MVS Writing Servers for APPC/MVS

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be the trademarks or service
marks of others.

Notices

Notices xi

xii z/OS V1R1.0 MVS Writing Servers for APPC/MVS

About This Book

APPC/MVS is an implementation of IBM’s Advanced Program-to-Program
Communication (APPC) in the MVS operating system. APPC/MVS allows MVS
application programs to communicate on a peer-to-peer basis with other application
programs on the same z/OS system, different z/OS systems, or different operating
systems (including Microsoft Windows®, Sun Solaris, AIX, OS/400, OS/2, and VM in
an SNA network. These communicating programs, known as transaction programs
(TPs) and servers, together form cooperative processing applications that can
exploit the strengths of different computer architectures. This book tells how to
design and write APPC servers to run on MVS. A companion book, z/OS MVS
Programming: Writing Transaction Programs for APPC/MVS, tells how to design
and write APPC/MVS transaction programs.

In this book, the term APPC/MVS transaction program refers to a program, running
in an MVS address space, that uses APPC/MVS services. The term transaction is
not restricted to programs scheduled by the APPC/MVS transaction scheduler, or to
programs using APPC/MVS services.

In this book, the term APPC/MVS server refers to a specific type of transaction
program; one that can manage multiple inbound LU 6.2 conversations from multiple
client transaction programs, serially or concurrently. The client programs may be
running on the same system or on other systems in the SNA network (such as an
OS/2 system running on a workstation).

Note that APPC/MVS transaction programs and servers are parts of cooperative
processing applications and are distinct from, but coexistent and compatible with,
CICS and IMS transaction processing applications.

This book is a companion to z/OS MVS Programming: Writing Transaction
Programs for APPC/MVS, which describes callable services that are available to
both APPC/MVS transaction programs and servers. This book describes the
callable services that are useful only to APPC/MVS servers. Servers use these
services to establish and manage one or more queues of inbound allocate requests
from the installation’s transaction programs. These queues are referred to as
allocate queues . The services used to create and manage allocate queues are
known as allocate queue services .

Who Should Use This Book
This book is written for application programmers who use APPC/MVS application
programming interfaces (APIs) to design and code applications. The book assumes
the user understands the basic concepts of APPC/MVS, and can code in one or
more high-level languages (HLLs) that support APPC/MVS servers. For a list of the
HLLs that can be used to code APPC/MVS servers, see Table 3-1 on page 3-1.

How to Use This Book
This book is one of the set of programming books for MVS. This set describes how
to write programs in assembler language or high-level languages, such as C,
FORTRAN, and COBOL. For more information about the content of this set of
books, see z/OS Information Roadmap.

© Copyright IBM Corp. 1993, 2001 xiii

Where to Find More Information
Where necessary, this book references information in other books, using the
shortened version of the book title. For complete titles and order numbers of the
books for all products that are part of z/OS, see z/OS Information Roadmap. The
following table lists the titles and order numbers of books for other IBM products.

Short Title Used in This Book Title Order Number

AS/400 APPC Programmer’s Guide AS/400 Communications: Advanced Program-to-Program
Communication Programmer’s Guide

SC41-8189

CPI-C Reference Common Programming Interface Communications
Reference

SC26-4399

OS/2 APPC Programming Guide and
Reference

OS/2 APPC Programming Guide and Reference SC31-6160

SNA Formats SNA Formats GA27-3136

SNA Transaction Programmer’s
Reference Manual for LU 6.2

SNA Transaction Programmer’s Reference Manual for
LU 6.2

SC31-6808

SNA Technical Overview SNA Technical Overview GC30-3073

VM/ESA CP Programming Services VM/ESA CP Programming Services SC24-5520

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

xiv z/OS V1R1.0 MVS Writing Servers for APPC/MVS

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library .

3. Click on zSeries .

4. Click on Software .

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

About This Book xv

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

xvi z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Summary of Changes

Summary of Changes
for SA22-7620-00
z/OS Version 1 Release 1

The book contains information also presented in OS/390 MVS Programming:
Writing Servers for APPC/MVS.

© Copyright IBM Corp. 1993, 2001 xvii

xviii z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Chapter 1. Introduction

Objective
This chapter is intended to help users decide whether writing an APPC/MVS
server is the best solution to meeting a particular goal.

Distributed Applications
In a distributed processing environment, a programmer is free to use the strengths
of different operating systems to meet the particular needs of the installation. In the
past, programmers were forced to accept whatever unique limitations existed for the
particular operating system for which they developed applications. Creativity, as a
result, was hampered.

APPC supports distributed processing across PC, midrange, and mainframe
operating systems. Using APPC, programmers can write applications that take
advantage of the different strengths of each operating system. Such applications
are called distributed applications.

For example, an application that formerly ran to completion entirely on a mainframe
computer, can now be divided so that one part remains on the mainframe and the
other part runs on an workstation. The application writer can then take advantage of
the workstation’s graphical user interface and the mainframe computer’s
number-crunching and database processing capabilities.

For distributed processing to work, the programs running on different operating
systems must be able to communicate with each other effectively. APPC makes it
possible for programs running on different operating systems to “speak the same
language.” Operating systems such as z/OS, OS/400, OS/2, and VM have a
common set of communication services. Programs that reside on these operating
systems can use the services (or verbs), to “converse” with each other across a
SNA network.

Applications “connect” to the SNA network through one or more logical units (LUs)
installed on the operating system. To fully participate in conversations across a SNA
network, applications require a specific type of LU known as LU 6.2. With LU 6.2,
the operating system is said to support APPC (Advanced Program-to-Program
Communications).

The Client/Server Model
The term “client/server” describes a type of distributed processing in which an
application is divided into two parts, each possibly residing on separate operating
systems, but working together to provide a service to the end user. As shown in
Figure 1-1 on page 1-2, one part of the application, the client, typically resides on a
workstation and requests a service for the end-user. The other part of the
application, the server, usually resides on a larger machine, such as a mainframe
computer. The server program uses the resources of the mainframe computer to
perform services requested by each client.

© Copyright IBM Corp. 1993, 2001 1-1

Depending on how it is designed, a server can process requests from multiple
clients concurrently. Generally, there is one server for many clients.

The client is usually the part of the application that is “seen” by the end-user.
Therefore, the client half of a client/server application most often resides on a
workstation, where the end-user can interact with the application through the
workstation operating system’s graphical user interface.

Servers, on the other hand, are usually transparent to the end-user. That is, the
person who sits at the workstation only perceives the client half of the application,
the part that displays the information (though it was actually retrieved by a remote
server). Because there is only one server for a given set of clients, servers provide
an ideal way of managing shared access to system resources, such as data sets.
For this reason, servers are likely to reside on larger machines such as z/OS
mainframe computers.

Usually, the same person writes both the client and server parts of a client/server
application.

This book explains how to write servers for an APPC/MVS environment. These
servers can be written to serve client programs (also called client transaction
programs , or client TPs).

For information about writing client programs to interact with APPC/MVS servers,
see the appropriate programming manual for the particular operating system on
which the client program will reside.

If you are writing an APPC application that combines z/OS servers with client
transaction programs on other IBM operating systems, see the appropriate books
for corresponding APPC information:

Client
Application

Server
Application

Figure 1-1. The Client/Server Computing Environment

Introduction

1-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

v OS/2 APPC Programming Guide and Reference

v VM/ESA CP Programming Services

v AS/400 APPC Programmer’s Guide

v z/OS MVS Programming: Writing Transaction Programs for APPC/MVS

Overview

Reference

Before you continue, you should be familiar with the basic concepts of
APPC/MVS and the programming interfaces it provides. Part 1, “Introduction”
of z/OS MVS Programming: Writing Transaction Programs for APPC/MVS
provides such information.

APPC/MVS Server Facilities
With the addition of APPC/MVS server facilities in MVS/ESA SP 4.3, MVS/ESA
strengthens its support for the client/server model of programming. APPC/MVS
server facilities provide installations with the high-level-language callable services
needed to write APPC/MVS servers (MVS-resident programs that can manage
multiple LU 6.2 inbound conversations from multiple client TPs concurrently).

As of MVS/ESA SP 4.2, MVS/ESA provides scheduling support for LU 6.2
conversations between partner transaction programs. Inbound transaction program
requests are scheduled for execution by the APPC/MVS transaction scheduler. (The
installation can also supply its own transaction scheduler, if desired.) The
APPC/MVS transaction scheduler provides two types of scheduling for transaction
programs — standard and multi-trans. In both cases, the transaction scheduler
processes inbound requests by running each requested transaction program in a
subordinate address space called an initiator. While multi-trans scheduling provides
better performance for frequently accessed transaction programs, both scheduling
types are limited; no more than one inbound conversation can run in an initiator
address space at a time.

APPC/MVS server facilities provide another way to process LU 6.2 inbound
transaction program requests. Address spaces (started tasks, batch initiators,
TSO/E users, or APPC/MVS initiators) can directly receive specific inbound
requests, instead of requiring the transaction scheduler to process them. And, unlike
scheduled TPs, these address spaces can receive multiple inbound conversations
concurrently.

Resource Management
Installations can use APPC/MVS servers to perform global functions on behalf of
users. An installation can centralize, within a single server address space, many of
the requests for resources commonly made during transaction processing. For
example, servers can be used to manage access to MVS resources, such as data
sets and data bases.

APPC/MVS servers thus present an ideal solution for consolidating some of the
redundant processing that normally occurs when transaction programs must access
the same resources on MVS.

Introduction

Chapter 1. Introduction 1-3

Owning Inbound Conversations
APPC/MVS server facilities provide a set of high-level language callable services
that allows a server application to “own” and thereafter manage a subset of the
transaction program requests that enter an APPC/MVS system. A server owns
inbound allocate requests by registering for them. Thereafter, APPC/MVS monitors
the allocate requests that enter the system for those requests for which a server
has registered. Rather than routing such requests to a transaction scheduler,
APPC/MVS places the requests on a queue to await further processing by the
APPC/MVS server. These queues are called allocate queues . APPC/MVS servers
process allocate requests by receiving them from allocate queues and performing
the function requested by the client TP. The services that allow servers to create
and manage allocate queues are called allocate queue services .

APPC/MVS directs inbound allocate requests for which no server has registered to
an APPC/MVS transaction scheduler.

In previous releases of MVS, applications needed to use the APPC/MVS transaction
scheduler services to receive multiple inbound conversations concurrently. Now,
many of the same applications can be written as APPC/MVS servers, which offer
the following advantages over transaction schedulers:

v Servers are easier to code.

v Servers need not run authorized. That is, servers can run in problem state, with
PSW key 8-15.

v Servers can run in any MVS address space (started tasks, batch initiators,
TSO/E users, or APPC/MVS initiators) except a transaction scheduler address
space.

v Servers can select a desired subset of the inbound conversations from a
particular LU. (The transaction scheduler interface requires the caller to own an
LU—and all of its inbound conversations—exclusively.)

The Allocate Queue
APPC/MVS servers might best be thought of as “managers” of one or more allocate
queues. Therefore, the concept of the allocate queue is central to understanding
how to use APPC/MVS servers.

This discussion covers the following topics:
v “Creating an Allocate Queue”
v “APPC/MVS Inbound Processing” on page 1-5
v “Server Processing: An Overview” on page 1-6
v “Request Flow” on page 1-6
v “Managing Allocate Queues” on page 1-7.

Creating an Allocate Queue
An MVS application can receive inbound LU 6.2 conversations directly (rather than
through a transaction scheduler) by requesting the conversations through a process
called registering. When it registers, the server application specifies, through the
Register_For_Allocates service, which allocate requests it is to serve. Specifically,
the server specifies the name of the local TP to which the client TP issues the
allocate request, and the name of the LU that is targeted by the allocate request.
An application that has successfully registered for allocate requests is considered to
be an APPC/MVS server.

Introduction

1-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

APPC/MVS places inbound allocate requests for which a server has registered on a
structure called an allocate queue, on a first-in, first-out (FIFO) basis. APPC/MVS
creates the allocate queue at the completion of the server’s registration. APPC/MVS
creates a separate allocate queue for every unique server registration. The server
selects allocate requests from the allocate queue for subsequent processing.

A server can register for all the TP/LU pairs it has RACF authority to serve. Your
installation’s security administrator grants this authority through the APPCSERV
general resource class of RACF (or a functionally equivalent security product).

APPC/MVS Inbound Processing
When a server application registers for allocate requests, it assumes a subset of
the inbound workload that would otherwise be routed to a transaction scheduler.
The server application is responsible for processing the allocate requests for which
it has registered.

Figure 1-2 illustrates inbound processing.

In Figure 1-2, an inbound allocate request enters the system. APPC/MVS first
checks to see whether any address spaces on the system had previously registered
to serve the request. If so, APPC/MVS places the request on an allocate queue
from which the server can later select it for processing. When the server selects the
request from the allocate queue (through the Receive_Allocate service), the server
receives the conversation ID of the conversation. A conversation with the issuer of
the request (the client TP), can then take place.

In general, if no servers have registered for the request, APPC/MVS attempts to
schedule the request to a transaction scheduler for subsequent processing.

APPC
VTAM

APPC
Address
Space

APPC
TP

Calls

APPC/MVS
Transaction
Scheduler
Address
Space

APPC/MVS
Transaction
Initiator

APPC/MVSTransaction
Initiators

Allocate
Queue

Server
Address
Space

Request

Inbound

Figure 1-2. APPC/MVS Inbound Processing

Introduction

Chapter 1. Introduction 1-5

For information about APPC/MVS scheduling, see z/OS MVS Planning: APPC/MVS
Management.

Server Processing: An Overview
The following list presents an overview of the main steps that servers follow when
processing inbound conversations. Later chapters of this book provide the details
for performing these steps.

1. Becoming a server —

An application becomes an APPC/MVS server when it registers to serve
inbound allocate requests (through the Register_For_Allocates service). When
the server’s Register_For_Allocates call completes successfully, APPC/MVS
begins placing inbound allocate requests that arrive for the server in an allocate
queue.

The primary parameter returned from Register_For_Allocates is the allocate
queue token, which uniquely identifies the queue from which the server will
select requests.

2. Serving requests —

To obtain an allocate request from an allocate queue, a server calls the
Receive_Allocate service, and supplies the allocate queue token it received at
the completion of its call to the Register_For_Allocates service.

The Receive_Allocate service returns to the server the conversation ID of the
conversation just received. The server uses the conversation ID to hold APPC
communications with the client TP. Both client and server can use the existing
CPI-C or MVS specific conversation services described in z/OS MVS
Programming: Writing Transaction Programs for APPC/MVS, such as
Send_Data or Receive_and_Wait.

3. End processing —

To stop serving allocate requests, a server calls the Unregister_For_Allocates
service.

Request Flow
Figure 1-3 on page 1-7 shows the general flow of inbound allocate requests to a
server address space. In the figure, a server has registered to receive the allocate
requests that arrive at LUA for TPA. APPC/MVS places these requests on an
allocate queue to await retrieval by the server. To retrieve an allocate request, the
server calls the Receive_Allocate service. The Receive_Allocate service provides
the server with the conversation ID, which the server uses to communicate with the
client TP that issued the allocate request.

Presumably, during the conversation, the server provides a service to the client TP,
such as searching data that the server controls, and returning data to the client TP.
At the completion of its processing, the server might determine that it will stop
serving inbound conversations. At this point, the server calls the
Unregister_For_Allocates service.

Introduction

1-6 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

While this book also describes callable services that provide more advanced
functions, “basic” servers require only the services that are shown in Figure 1-3.
(For information about using these services, see “The Basic Server Functions” on
page 2-2.)

Managing Allocate Queues
Servers can use APPC/MVS callable services to manage their allocate queues. For
example:

v Use the Set_Allocate_Queue_Notification and Get_Event services to be notified
when an allocate queue reaches a specified number of allocate requests.

v Use the Query_Allocate_Queue service to obtain commonly needed information
about the status of an allocate queue, such as the number of allocate requests
waiting to be processed.

v Use the Set_Allocate_Queue_Attributes service to have APPC/MVS preserve the
allocate queue during interruptions in server processing.

For information about using the APPC/MVS callable services needed to perform
these functions, see “Advanced Server Functions” on page 2-12.

Server Initialization
APPC/MVS servers can be initialized in any of the following ways:

v Operator START command (if the server runs as a started task). Here, you must
define the server as a started procedure in PROCLIB. Your installation’s security
administrator can assign user IDs to started servers by modifying the RACF
started procedures table (see “Installing APPC/MVS Servers” on page 2-27).

v TSO/E LOGON command (if the server is a TSO/E address space). Here, you
can define the server as a command list (CLIST) or REXX exec.

v Batch initiator (if the server is submitted as a batch job). Here, you must provide
the JCL needed to run the server.

v APPC/MVS initiator (if the server is scheduled by the APPC/MVS transaction
scheduler in response to an inbound allocate request). For information, see the
section that follows.

Starting Servers With APPC/MVS: A server can run in an address space under
the control of the APPC/MVS scheduler, but, to avoid potential confusion, schedule
the server by a TP name different from any TP names it serves. Having a server
scheduled with a TP name, and allowing it to register for the same TP name, is

TPA

TPA

APPC/MVS

TPA Allocate Queue

Server Address Space

REGISTER (TPA,LUA,...)LUA

RECEIVE ALLOCATE

RECEIVE ALLOCATE

UNREGISTER (TPA,LUA,...)

Figure 1-3. Flow of Inbound Conversations to a Server Address Space

Introduction

Chapter 1. Introduction 1-7

acceptable if the server can guarantee that only one request for the TP name has
been routed to the scheduler before its call to the Register_For_Allocates service
completes successfully.

Otherwise, it is possible for the situation to arise where two or more transaction
program requests of the same name are served and scheduled. (If many TP
requests enter the system simultaneously, APPC/MVS attempts to schedule them. If
one of the scheduled TPs registers for the same TP name, later requests for that
same TP name are served).

Special Considerations for Authorized Servers
You might decide that your server should run as an authorized program. The
primary advantage of authorized servers is that they can use authorized callable
services and macros.

Additional reasons for having your server run authorized include:

v Using authorized RACF macros to tailor security environments for individual
users.

Multiple user requests of various security levels might run in the same server
address space. These users all run under the server’s security environment.
Authorized servers, however, can create customized security environments to
match the security access defined to individual users (through the RACROUTE
REQUEST=VERIFY macro, for example).

v Joining the APPC XCF group to receive information that is otherwise available
only to transaction schedulers.

Servers must be authorized to join the APPC XCF group. As a member of this
group, the server could receive APPC information, or information about an LU
with which the server is associated. For example:

– LU messages

– “APPC ACTIVE/INACTIVE” status messages

– Installation-determined data specified through the USERVAR and ALTLU
keywords in the APPCPMxx member of the parmlib concatenation.

Note that servers running as members of the APPC XCF group are more difficult
to write. You must, for example, also provide an XCF message user routine that
runs in SRB mode.

For information about the APPC XCF group, and writing message user routines,
see z/OS MVS System Messages, Vol 3 (ASB-BPX).

Related System Functions
In addition to allocate queue callable services, APPC/MVS also provides the
following related support for APPC/MVS servers:

v The NOSCHED option in the APPCPMxx member of the parmlib concatenation
allows the installation to define LUs that are not owned by transaction schedulers
(NOSCHED LUs). For APPC/MVS servers, NOSCHED LUs allow the installation
to separate the workload processed by APPC/MVS servers from that done by
transaction schedulers. Installations can also use NOSCHED LUs to flow
outbound allocate requests without having a transaction scheduler active.

v RACF general resource class, APPCSERV, allows the installation to control
which user IDs can become APPC/MVS servers.

Introduction

1-8 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

v SMF type 33, subtype 2 records provide accounting information for each APPC
conversation in an address space.

v APPC/MVS servers can specify symbolic destination names (in the SIDEINFO
data set) when registering to receive inbound conversations. In previous releases
of MVS/ESA, symbolic destination names could only be used for allocating
outbound conversations.

v The DISPLAY APPC command provides status information (through system
messages) about APPC/MVS servers and their associated allocate queues.

v CTRACE and IPCS capabilities, symptom records, and the application
programming interface (API) trace facility, for diagnosing problems with
APPC/MVS servers.

What the Application Programmer Provides
You are responsible for providing many of the functions your server might need,
such as:
v Performing the function the client TP requested.
v Load balancing, if desired (through multi-tasking).
v Serializing access to resources, such as data sets or control blocks.
v Security checking of requestor user IDs, if desired. (The server must be

authorized to do this.)
v Providing recovery from its abends.
v Starting and stopping servers.

What Your Installation Can Provide
Your installation can define one or more NOSCHED logical units (LUs) to support
APPC/MVS servers. NOSCHED LUs are not “owned” by transaction schedulers and
can be used to separate servers from transaction schedulers. An installation might
want to isolate servers to better monitor their performance (through the DISPLAY
APPC,LU command). For more information about NOSCHED LUs, see z/OS MVS
Planning: APPC/MVS Management.

Introduction

Chapter 1. Introduction 1-9

1-10 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Chapter 2. Using Allocate Queue Services

Objective

This chapter provides the conceptual information you need to use APPC/MVS
allocate queue callable services.

For specific information about coding the parameters on these services, see
Chapter 4. APPC/MVS Allocate Queue Services.

In the discussion that follows, the APPC/MVS allocate queue callable services are
organized, based on complexity, into two groups: basic and advanced.

The basic functions allow MVS applications to serve inbound allocate requests.
These functions are used to create, serve, and delete allocate queues. The allocate
queue services that provide the basic functions are:

v Register_For_Allocates (ATBRFA2) — Register for inbound allocate requests.

v Receive_Allocate (ATBRAL2) — Request an inbound conversation for
processing.

v Unregister_For_Allocates (ATBURA2) — Unregister for inbound allocate
requests.

These services are described in “The Basic Server Functions” on page 2-2.

APPC/MVS servers use the advanced functions to manage the allocate queues for
which the servers are registered. Servers could, for example, use advanced
functions to aid in performing load balancing. The allocate queue services that
provide the advanced functions are:

v Set_Allocate_Queue_Notification (ATBSAN2) — Request to be notified when an
allocate queue reaches a specified maximum or minimum number of allocate
requests (or cancel a previous request for such notification).

v Get_Event (ATBGTE2) — Obtain notification of events that was previously
requested through the Set_Allocate_Queue_Notification service.

v Query_Allocate_Queue (ATBQAQ2) — Obtain commonly needed information
about the status of an allocate queue, such as the number of allocate requests
that currently reside on the queue.

v Set_Allocate_Queue_Attributes (ATBSAQ2) — Have APPC/MVS preserve a
particular allocate queue during periods of time when no servers are registered
for the queue.

These services are described in “Advanced Server Functions” on page 2-12.

Coded Example

This book concludes with a coded example of an APPC client/server
application (written in the C programming language), in three parts:
v “Appendix C. Sample APPC/MVS Server” on page C-1
v “Appendix D. Sample Client Program” on page D-1
v “Appendix E. Sample Error Routine and Header File” on page E-1.

© Copyright IBM Corp. 1993, 2001 2-1

Using the Services Asynchronously
You can use allocate queue services asynchronously by specifying the address of
an event control block (ECB) on the notify_type parameter. If APPC/MVS accepts
the request for asynchronous processing, it sets a return code of zero for the
service. The server can then continue other processing before waiting for the ECB
to be posted. When all parameters are returned and the service completes,
APPC/MVS notifies the server by posting the ECB.

By contrast, when you call a service synchronously (by setting the notify_type
parameter to a value of none), your server loses control until the service completes.
Your server regains control when APPC/MVS completes the request, and passes
return and reason codes, and any other returned parameters from the service.

When you specify an ECB on the notify_type parameter, you must clear the ECB to
zero and meet all requirements for the POST macro. When the system posts the
ECB to show that asynchronous processing is complete, the completion code in the
ECB is the return code for the service. The system processes all input parameters
before returning to the server, so the server is free to use these areas on return
without affecting the asynchronous processing. The system accesses and
manipulates all output parameters directly by the asynchronous processing,
however, and therefore the server should not reference or modify these parameters
until the system notifies the server that call processing is complete.

Asynchronous processing is recommended for performance-intensive server
applications, such as:
v Servers that perform multi-processing
v Servers that cannot be suspended
v Servers that process multiple conversations in a single dispatchable unit.

Asynchronous processing is available on many TP conversation services. For more
information, see z/OS MVS Programming: Writing Transaction Programs for
APPC/MVS.

Using JES Services
APPC/MVS servers can use the same JES SYSOUT and data set integrity
checking services available to other MVS applications. Note that any SYSOUT data
generated by a server is printed under the server’s jobname and user ID (not the
user IDs of the server’s individual client TPs).

Generally, all JES services used by the server run under the server’s user ID.

The Basic Server Functions
This section explains how applications can use allocate queue services to create,
serve, and delete allocate queues. For additional reference information for each of
the allocate queue services, including syntax and parameter descriptions, see
“Chapter 4. APPC/MVS Allocate Queue Services” on page 4-1.

Creating An APPC/MVS Server
An application becomes a server of inbound allocate requests through a process
called registering. When it registers, the application specifies, through the
Register_For_Allocates service, the name of the local TP to which the client TP

Using Allocate Queue Services

2-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

issues its allocate requests, and the name of the LU that is targeted by the allocate
requests. An application that has successfully registered for allocate requests is
considered to be an APPC/MVS server.

Normally, APPC/MVS directs inbound allocate requests to a transaction scheduler.
When an application registers for allocate requests, it essentially “steals” a subset
of the inbound workload that would normally be routed to a transaction scheduler.
The server application then becomes responsible for processing the allocate
requests for which it has registered. (Note that servers do not share LUs with
schedulers, unless the servers are owned by the schedulers. For more information,
see “For Which Local LUs Can a Server Register?” on page 2-5.)

Specifying Symbolic Destination Names
On its call to the Register_For_Allocates service, the server application specifies the
TP name and local LU name of the inbound allocate requests to be served. The
server can specify explicit values for the TP_name and local_LU_name parameters,
or it can specify a symbolic destination name which resolves to the TP name/local
LU name. (Installations define symbolic destination names in the side information
data set.) If you specify a symbolic destination name, the local LU name and TP
name are obtained from the side information data set (the mode name, which is
also contained in the side information, is ignored for calls to the
Register_For_Allocates service). The local LU name is taken from the partner LU
specified in the symbolic destination entry.

For information about defining symbolic destination names, see z/OS MVS
Planning: APPC/MVS Management.

Filtering Requests
When registering for inbound allocate requests, applications can limit their selection
of requests by specifying certain “filter” parameters. Applications can limit their
registration to the allocate requests for particular TP/local LU pairs that bear a
certain user ID, profile, or partner LU name — or some combination of these filters.

APPC/MVS creates a separate allocate queue for each unique combination of filters
you specify to the Register_For_Allocates service. When multiple servers register
for the same TP name/LU name, and specify the same filter values, the servers
share the allocate queue that results. If servers register for the same TP name/LU
name, but specify different filter values, APPC/MVS creates a different allocate
queue for each unique registration.

Specify a blank value for any filter group you do not want to limit. If you specify
blanks for all filters, your server can receive allocate requests for the specified TP
name and local LU name, regardless of user ID, profile, or partner LU name.

It is possible for one server to register for a subset of the inbound requests that are
being served by another server. In this situation, APPC/MVS uses a hierarchy to
determine which server is to receive the inbound request.

For example, Server A registers for a particular TP name, and specifies blanks for
the filters, to receive all requests for the TP regardless of the client TP’s user ID,
profile, or partner LU name. Server B registers for the same TP name, but specifies
PAYROLL for the profile filter (and blanks for User ID and partner LU name), to
receive only the client TP’s requests from the PAYROLL security profile.

Table 2-1 on page 2-4 shows the order in which APPC/MVS checks for a server for
allocate requests:

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-3

Table 2-1. Search Order for Filters

Order of Priority Request is queued for the server that specified the following
filters:

1 User ID, profile, and partner LU name

2 User ID and profile

3 User ID and partner LU name

4 User ID

5 Profile and partner LU name

6 Profile

7 Partner LU name

8 No filters were specified (accept any allocate request from the client
TP, regardless of filter values).

Applying this hierarchy to our example shows that APPC/MVS places the client TP’s
allocate requests from security profile PAYROLL on Server B’s allocate queue, and
places all other requests from the client TP on Server A’s allocate queue.

Receiving the Allocate Queue Token
The primary output from a successful Register_For_Allocates call is the allocate
queue token, which uniquely identifies the allocate queue. Use the allocate queue
token to indicate the particular allocate queue from which your server is to receive
allocate requests (through the Receive_Allocate service). A server also requires the
allocate queue token to perform other types of processing provided by allocate
queue services.

Servers that share an allocate queue also share the same allocate queue token. As
mentioned previously, multiple servers share an allocate queue by registering for
the same TP name/local LU name and filters, if any.

Securing Access to Client TPs
RACF allows you to define APPCSERV RACF security profiles to control servers’
access to client TPs. APPCSERV profile names allow the installation to grant or
deny servers access to specific TP or LU names.

APPCSERV profile names are of the form dbtoken.tpname, where:

v dbtoken is the database token (1 to 8 characters) of the TP profile data set. The
TP profile dataset is associated with the LU at which the server resides. (This is
the LU that your server specifies on the local_LU_name parameter of the
Register_For_Allocates service.)

v tpname is the name of the transaction program to be served.

To register for a particular TP name, the user ID under which the server runs must
have been granted READ access to the TP’s security profile in the APPCSERV
RACF general resource class.

RACF uses the user ID from the server’s task-level security environment, or, if the
task-level security environment does not exist, RACF uses the user ID associated
with the server’s address space security environment.

If the TP name is not protected by the APPCSERV class, and the APPCSERV class
is active, APPC/MVS fails the request with return code 16
(atbcts_request_unsuccessful) and reason code 14 (atbcts_not_auth_to_serve_tp).

Using Allocate Queue Services

2-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

For the procedure your installation’s security administrator could use to set-up
security for TPs and servers, see “Installing APPC/MVS Servers” on page 2-27.

For Which Local LUs Can a Server Register?
In some situations, a server cannot specify certain LUs as the local LU on its call to
the Register_For_Allocates service. Use Table 2-2 on page 2-6 to determine
whether your server can specify a particular local LU.

In Table 2-2, a “yes” or “no” indicates whether a server in the address space in the
left column (Column 1) is permitted to specify a particular local LU. If an address
space attempts to register for an LU it cannot use, APPC/MVS fails the request with
return code 16 (atbcts_request_unsuccessful) and reason code 15
(atbcts_not_auth_to_local_lu).

Column 1 lists different types of address spaces that contain servers attempting to
register. The top two entries in column 1 show address spaces that are not “owned
by” (connected to) a transaction scheduler. Typical examples of such address
spaces are TSO/E address spaces and JES batch initiators. The last four rows of
Table 2-2 show address spaces that are owned by transaction schedulers.

Address spaces can also differ depending on whether their conversations can flow
through the system base LU (the default LU). Normally, an address space’s
conversations can use the system base LU. If an address space is to be later
connected to a transaction scheduler, however, the scheduler might need to limit
the address space’s conversations to LUs owned by the scheduler. Here, the
scheduler would prohibit the address space from using the system base LU through
the Set_AS_Attributes service.

For information about the system base LU, see z/OS MVS Planning: APPC/MVS
Management. For information about writing transaction schedulers and using the
Set_AS_Attributes service, see z/OS MVS System Messages, Vol 3 (ASB-BPX).

The columns to the right of Column 1 in Table 2-2 on page 2-6 show the results
when servers attempt to register for different types of local LUs. Column 2 shows
the results when servers specify NOSCHED LUs when registering. (A NOSCHED
LU is an LU that is not associated with a transaction scheduler. Like other LUs,
NOSCHED LUs are defined through the LUADD statement in the APPCPMxx
member of the parmlib concatenation. For more information about defining
NOSCHED LUs, see z/OS MVS Initialization and Tuning Reference.)

Columns 3 and 4 of Table 2-2 on page 2-6 show the results when servers attempt
to register for LUs that are owned by different transaction schedulers (“scheduler A”
and “scheduler B”) that coexist on the same system. The IBM-supplied APPC/MVS
transaction scheduler, ASCH, is an example of such a scheduler.

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-5

Table 2-2. Local LUs for Which a Server Can Register

The server address space is... The LU is...

...a NOSCHED
LU

...owned by
Scheduler A

...owned by
Scheduler B

...not owned by a scheduler Yes No No

...not owned by a scheduler and
“prohibit default LU” is
specified

No No No

...owned by Scheduler A Yes Yes No

...owned by Scheduler A, with
“prohibit default LU” specified

No Yes No

...owned by Scheduler B Yes No Yes

...owned by Scheduler B, with
“prohibit default LU” specified

No No Yes

Additional Considerations for Registering
When using the Register_For_Allocates service, you will need to observe the
following conventions and restrictions:

v An address space that calls the Register_For_Allocates service for a TP/local LU
takes precedence over a program that specifies the same TP/local LU on a call
to the Register_Test service. (The Register_Test service is described in z/OS
MVS Programming: Writing Transaction Programs for APPC/MVS.)

v A transaction scheduler (one that has already called the APPC Identify service)
cannot register for allocate requests. If a transaction scheduler calls the
Register_For_Allocates service, APPC/MVS fails the request with return code 16
(atbcts_request_unsuccessful) and reason code 10 (atbcts_sched_cant_register).

v An APPC/MVS server cannot use a VTAM generic resource name for a local LU,
either explicitly on the Register_For_Allocates service or implicitly through a side
information entry. In these cases, the Register_For_Allocates service returns
control with return code 16 (atbcts_request_unsuccessful), and reason code 12
(atbcts_inval_local_lu).

v An APPC/MVS server may filter allocate requests by specifying a VTAM generic
resource name for the partner LU. If it does so, but the local LU first establishes
a conversation with the partner using the partner’s specific name, the server will
not receive any allocate requests even if APPC/MVS receives requests that
exactly match the filters. To avoid this problem, register the server with an
APPC/MVS LU that handles outbound conversations using only the generic
resource name for the partner LU.

Receiving Inbound Conversations
An allocate queue stores allocate requests in the order which they arrive; that is, in
first-in, first-out (FIFO) order. To request an inbound conversation, an APPC/MVS
server calls the Receive_Allocate service, which returns the oldest allocate request
(inbound conversation) on the specified allocate queue. Specifically,
Receive_Allocate returns the conversation ID of the inbound conversation, which
allows your server to communicate with the client TP. (Note that APPC/MVS servers
use the Receive_Allocate service to receive inbound conversations, instead of the
Accept_Conversation or Get_Conversation calls, which are commonly used by
scheduled transaction programs.)

Using Allocate Queue Services

2-6 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Specifying the Allocate Queue Token
To indicate the particular allocate queue from which your server is to receive an
allocate request, specify the allocate queue token the server received when it
registered. Specify the allocate queue token in the allocate_queue_token parameter
of the Receive_Allocate service.

Allowing the Request to Wait
At times, an allocate queue might not contain an allocate request when your server
requests one. To handle this possibility, you can specify that the Receive_Allocate
service is allowed to wait for an allocate request to become available (through the
receive_allocate_type parameter).

To specify whether the Receive_Allocate request is allowed to wait, and, if so, for
how long, set the receive_allocate_type parameter to one of the following values:

atbcts_wait
Wait indefinitely for an allocate request to become available.

atbcts_timed
Wait for a specified interval before returning control (this interval is
specified, in seconds, in the time_out_value parameter).

atbcts_immediate
Do not wait (return control immediately) if an allocate request is not
currently available.

Specifying the Timeout Value: You can specify a timeout value for your calls to
the Receive_Allocate service. The timeout value controls the amount of time the
Receive_Allocate request can wait for an allocate request to become available. If an
allocate request becomes available before the timeout value is exceeded, the
server receives the allocate request. Otherwise, APPC/MVS returns control to the
server with return code 16 (atbcts_request_unsuccessful) and reason code 21
(atbcts_no_alloc_to_receive).

Have the server specify a timeout value large enough to allow for intervals when
there are no allocate requests on the allocate queue, and the server must wait for a
new request to arrive.

Used With Notify_Type: To further define how APPC/MVS is to process your
request, set the notify_type parameter to indicate whether the request is to be
processed synchronously or asynchronously. Table 2-3 on page 2-8 shows the
effects of specifying the receive_allocate_type parameter with the notify_type
parameter:

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-7

Table 2-3. Results of Notify_Type/Receive_Allocate_Type Combinations

Notify_Type Value: Receive_Allocate_Type Value:

atbcts_immediate atbcts_wait atbcts_timed

NONE Control returns to the caller
immediately with either an
allocate request (if one is
available), or a return and
reason code that indicates the
request failed because no
allocate requests are available
to be received.

Control does not return to the
caller until an allocate request
is received.

Control does not return to the
caller until an allocate request
is received, or the interval
specified in the
time_out_value parameter is
exceeded.

ECB Control returns to the caller
immediately, while APPC/MVS
processes the call
asynchronously. If an allocate
request is available,
Receive_Allocate returns the
allocate request. Otherwise,
the caller receives a return
and reason code which
indicates that no allocate
requests are available to be
received.

Control returns to the caller
immediately, while APPC/MVS
processes the call
asynchronously. APPC/MVS
posts the caller’s ECB when
an allocate request is
returned.

Control returns to the caller
immediately, while APPC/MVS
processes the call
asynchronously. If an allocate
request is available,
Receive_Allocate returns the
allocate request. Otherwise,
Receive_Allocate waits for the
interval specified in the
time_out_value parameter for
an allocate request before
posting the ECB.

For both synchronous and asynchronous calls to the Receive_Allocate service, the
server is notified when the allocate request arrives, or when the specified timeout
value is exceeded.

Receiving the Conversation ID
The primary output from a successful Receive_Allocate call is the conversation ID,
which uniquely identifies the conversation that was received. A server uses the
conversation ID to communicate with the transaction program that initiated the
conversation (the client TP). The conversation ID is required as input to other
APPC/MVS callable services, such as the LU 6.2 Send and the CPI-C Receive
services. Once a server obtains the conversation ID, communications can proceed
between the partner programs (client TP and server) until one partner ends the
conversation.

For information about using APPC/MVS TP conversation services, see z/OS MVS
Programming: Writing Transaction Programs for APPC/MVS.

Other Outputs From Receive_Allocate
Besides the conversation ID, the Receive_Allocate service returns the following
information about the conversation that was received:
v Conversation mode name and partner LU name
v Conversation type and synchronization level
v User ID and security profile.

Conversation Mode Name/Partner LU Name: The Receive_Allocate service
returns the conversation mode name and partner LU name, which define the
session in which the conversation is running.

Conversation Type/Synchronization Level: The server can use the returned
parameters, conversation type and synchronization level, to determine whether
particular conversations conform to expected formats.

Using Allocate Queue Services

2-8 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

User ID/Security Profile: The Receive_Allocate service returns the user ID and
security profile associated with the inbound conversation that was received. The
server can use this information to perform security-related functions.

If your server is to run authorized (that is, in supervisor state, or with PSW key 0-7),
it can use RACF macros to check the security of client user IDs, or create a
security environment that is appropriate for the client, if desired. For example:

v Use the RACROUTE macro to examine the security environment of requestors’
user IDs, or call the Get_Attributes service to obtain the requestor’s user token
(UTOKEN).

v Set up separate security environments for users with various security clearances
(using the RACROUTE REQUEST=VERIFY macro).

For more information about using the RACROUTE macro, see z/OS SecureWay
Security Server External Security Interface (RACROUTE) Macro Reference.

If your server is to run unauthorized (that is, in problem state, or with PSW key
8-15), your installation can use the APPCTP security class to limit the user IDs that
can run certain TPs.

Using the Get_Attributes Service
Your server can extract information about the conversations it is processing, by
calling the Get_Attributes service. This service returns information about a particular
conversation, such the following:
v Partner LU
v Mode name
v Synchronization level
v Data format (mapped or basic)
v RACF UTOKEN associated with the inbound request.

The server could use this information, for example, to run under different
combinations of the above, using conditional logic to function appropriately.

For information about using the Get_Attributes service, see z/OS MVS
Programming: Writing Transaction Programs for APPC/MVS.

Rejecting Conversations
If necessary, your server can reject particular conversations by calling the
Reject_Conversation service. A server might reject conversations for reasons such
as:

v After issuing Get_Attributes, the server determines that the inbound conversation
has attributes the server does not support, such as a different synchronization
level or data format.

v The server determines that the output values from the Receive_Allocate service
do not match values that the server is designed to expect.

v When the server cannot satisfy inbound requests quickly enough to meet the
installation’s performance goals. For example, assume a database the server
needs to access has become unavailable. In this situation, you might decide that
it is better to require users to retry rather than wait for an unacceptably long
period.

When rejecting a conversation, your server communicates the reason for the
rejection to the client TP by specifying a sense code (as an input parameter to the
Reject_Conversation service). The partner LU resolves the sense code to a return
code that it passes to the client TP.

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-9

The Reject_Conversation service must be used early in a transaction; that is, before
any communication activity has occurred (such as data being sent or received).
Otherwise, APPC/MVS fails the call to the Reject_Conversation service. A limited
set of services, however, can be used on a conversation without causing the
conversation to be rendered ineligible for rejection. These services allow you to
obtain the conversation ID, as well as conversation-related information that might
help you in making rejection decisions.

Specifically, you can call the following services on a conversation and still retain the
ability to reject it:
v Receive_Allocate
v Get_Conversation
v Accept_Conversation
v Get_Type
v Get_Attributes
v Extract_Conversation_Type
v Extract_Mode_Name
v Extract_Sync_Level
v Extract_Partner_LU_Name.

The Reject_Conversation service is available to all TPs (including APPC/MVS
servers). For more information about using the Reject_Conversation service, see
z/OS MVS Programming: Writing Transaction Programs for APPC/MVS.

Unregistering For Allocate Requests
To have your server stop serving one of its allocate queues, or stop serving all the
allocate queues for which it is registered (to allow for a temporary pause in service,
for example), call the Unregister_For_Allocates service.

Through the Unregister_For_Allocates service, specify either of the following:

v Stop serving a particular allocate queue. Specify as an input the allocate queue
token for that allocate queue.

v Stop serving all allocate queues for which the server is registered (in other
words, stop being an APPC/MVS server). Here, specify eight bytes of zeroes as
input, in place of an allocate queue token.

On successful completion of the Unregister_For_Allocates service, the server is no
longer registered for one — or all — of its allocate queues. The server cannot serve
an allocate queue for which it is no longer registered.

Unregistering from an allocate queue also causes the server’s outstanding calls to
Receive_Allocate for that allocate queue to fail with return code 16
(atbcts_request_unsuccessful) and reason code 20 (atbcts_request_cancelled).

To resume serving the same allocate queue, the server must re-register for the
queue, and specify the same parameter values it specified on its original call to the
Register_For_Allocates service. (The server receives an allocate queue token,
which it uses to resume serving the allocate queue.)

Normally, APPC/MVS purges an allocate queue after the last server of the queue
unregisters from it. APPC/MVS rejects the allocate requests that reside on the
allocate queue with sense code X’084C0000’ (TP_Not_Available_No_Retry).

You can, however, have APPC/MVS preserve an allocate queue when no servers
are available. Here, APPC/MVS maintains the queue for an interval you specify

Using Allocate Queue Services

2-10 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

through the Set_Allocate_Queue_Attributes service. During the interval, APPC/MVS
continues to place new inbound requests for the server on the allocate queue. If no
server re-registers for the allocate queue before the interval expires, APPC/MVS
purges the queue and attempts to schedule later inbound requests for the TP/LU
name. APPC/MVS rejects any inbound requests that cannot be scheduled. For
more information, see “Allowing the Allocate Queue to Persist” on page 2-21.

If you do not specify that an allocate queue is to be maintained when no servers
are registered for it, the following occurs on successful completion of the
Unregister_For_Allocates service:

v If there are other servers registered for this allocate queue, the allocate queue
remains active.

v If no other servers are registered for the allocate queue, APPC/MVS purges the
allocate requests on the allocate queue.

Note that when you call the Unregister_For_Allocates service, you cause
APPC/MVS to clean-up any event notification options you might have requested for
the allocate queue. For more information about event notification options, and the
effects of calling Unregister_For_Allocates, see “Receiving Notification of Events” on
page 2-13.

APPC/MVS automatically unregisters a server from its allocate queues for the
following situations:
v Server’s address space ends
v Job that started the server ends
v Cleanup_AS or Cleanup_TP service is issued for the server’s address space
v Server’s local LU is deleted.

If the server is running in a transaction scheduler’s subordinate address space,
APPC/MVS unregisters the server from its allocate queues when the owning
scheduler calls the Unidentify service, or implicitly causes the Unidentify service to
be called. In this situation, all conversations that were previously received through
calls to the Receive_Allocate service are unaffected by this clean-up processing
and remain active.

Using Multiple Servers
To handle high volumes of inbound requests, you can write servers that perform
multi-tasking (see “Multi-Tasking Servers” on page 2-23), or, if transaction program
activity exceeds the capacity of a single server address space, you can start
additional server address spaces to serve the same allocate queue. The initial
server can use callable services to determine the transaction program load, and
then start a new ″copy″ of itself if appropriate.

Figure 2-1 on page 2-12 shows two server address spaces serving the same
allocate queue:

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-11

Note that APPC/MVS does not attempt to balance the transaction program requests
among address spaces.

Server address spaces must be started before they can serve any of the
transaction programs they are to serve (that is, there is no demand scheduling of
server address spaces).

Advanced Server Functions
Besides the basic server functions described in the previous section, APPC/MVS
servers can perform additional functions, such as:

v Obtain commonly needed information about the status of an allocate queue, such
as the number of allocate requests that currently reside on the queue.

v Receive notification when a particular allocate queue reaches a certain number
of allocate requests.

v Have the system preserve the allocate queue during interruptions in server
processing.

v Write client-specific information to SMF accounting records.

This section describes how to use APPC/MVS allocate queue services to perform
these advanced server functions. For additional reference information for each of
the allocate queue services, including syntax and parameter descriptions, see
Chapter 4. APPC/MVS Allocate Queue Services.

TPA

TPA

TPA

APPC/MVS

TPA Allocate Queue

Server Address Space

Server Address Space

REGISTER (TPA,LUA,...)

REGISTER (TPA,LUA,...)

RECEIVE ALLOCATE

RECEIVE ALLOCATE

RECEIVE ALLOCATE

UNREGISTER (TPA,LUA,...)

UNREGISTER (TPA.LUA,...)

TPA
TPA
TPA

LUA

Figure 2-1. Flow of Inbound Conversations to Multiple Server Address Spaces

Using Allocate Queue Services

2-12 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Querying the Allocate Queue
An APPC/MVS server can call the Query_Allocate_Queue service to obtain
commonly needed information about an allocate queue it is serving. The
Query_Allocate_Queue service returns the following information about the specified
allocate queue:

v TP name/local LU name for which the server registered

v Number of allocate requests in the allocate queue

v Age of the oldest allocate request on the allocate queue

v Time when the last call to the Receive_Allocate service was made by the server

v Time when the Receive_Allocate service last returned control to the server.

A server can query any allocate queue for which it is currently registered. The
server supplies, as one input to this service, the allocate queue token it received
when it registered for the allocate queue.

TP Name/Local LU name
Among the outputs from the Query_Allocate_Queue service are the name of the TP
and LU associated with the allocate queue.

The server specified these names when it registered for allocate requests. If the
server is serving more than one allocate queue, it can use the data returned in the
TP_name and local_LU_name parameters to distinguish one allocate queue from
another.

Other Information About the Allocate Queue
The Query_Allocate_Queue service also returns information that a server can use
to determine whether it is processing the requests on an allocate queue quickly
enough to meet the installation’s throughput goals. Among the information returned
is the number of allocate requests that currently reside on the allocate queue (in the
allocate_queue_size parameter).

The Query_Allocate_Queue service also returns the following information:

v Amount of time (in seconds) that the oldest allocate request has been in the
allocate queue

v Time when the last call to the Receive_Allocate service was made by the server

v Time when the Receive_Allocate service last returned control to the server.

A server can examine these parameters to determine whether it is meeting the
installation’s throughput goals, or if the allocate queue is growing at a rate that
requires more resources (such as additional servers) to process. If desired, your
server can take actions to increase its throughput. For example, if the server does
multi-tasking, it might add subtasks to process allocate requests at a faster rate.

A server can use the Query_Allocate_Queue service with the Get_Event service to
determine the status of the allocate queue for load balancing or diagnostic
purposes. The Get_Event service is described in “Receiving Notification of Events”.

Receiving Notification of Events
An APPC/MVS server can base its processing on the current sizes of its allocate
queues. For example, your server might allocate additional resources to manage a
growing workload more efficiently. This type of processing is sometimes called
workload balancing.

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-13

To check the size of an allocate queue at any one point in time, your server can call
the Query_Allocate_Queue service. To monitor the growth of an allocate queue
dynamically (that is, on an ongoing basis), however, use the
Set_Allocate_Queue_Notification service with the Get_Event service, as follows:

v Call the Set_Allocate_Queue_Notification service to request notification whenever
an allocate queue reaches a particular number of allocate requests.

v Call the Get_Event service to actually receive the notification you requested
through the Set_Allocate_Queue_Notification service.

Requesting Notification of Events
An APPC/MVS server can request to be notified when an allocate queue it is
serving reaches a particular number of inbound allocate requests. The server
requests such notification by calling the Set_Allocate_Queue_Notification service.

Use the Set_Allocate_Queue_Notification service to be notified when a particular
allocate queue:
v Increases to a certain number of allocate requests or
v Decreases to a certain number of allocate requests.

Notification of such events might be useful to servers that perform load balancing.
For example, if your server uses a variable number of subtasks to process an
allocate queue, the server can request notification when its allocate queue
increases to a predetermined maximum number of allocate requests. In this event,
the server might then take some action in response to the growing workload, such
as increasing the number of subtasks it uses to process the allocate queue.

By calling the Set_Allocate_Queue_Notification service, a server uses APPC/MVS
to monitor the size of a particular allocate queue. This service allows the server to
specify a number (or threshold) of allocate requests on which notification is to
occur. A server can specify a minimum or maximum threshold, or both.

When the allocate queue reaches the specified threshold, APPC/MVS “informs” the
server by placing an element that represents the event on a structure known as the
server’s event queue . There is one event queue per server, and it can contain any
number of event elements for any of the allocate queues for which the server is
registered. Each event element contains the type of threshold that was reached
(’MIN’ or ’MAX’), as well as the allocate queue token that identifies the particular
allocate queue, and a timestamp that shows when the event occurred.

For example, assume a server has requested to be notified when its allocate queue
increases to 40 allocate requests, or decreases to 15. Figure 2-2 shows how
APPC/MVS creates event elements in response to the allocate queue reaching
either of these thresholds.

Using Allocate Queue Services

2-14 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

APPC/MVS places elements on the server’s event queue in the order which they
occur — that is, on a first-in, first-out, (FIFO) basis. To retrieve an event element, a
server calls the Get_Event service, which returns the oldest event on the server’s
event queue.

Your server can request notification for any allocate queue for which it is currently
registered. The server supplies, as one input to this service, the allocate queue
token it received when registering for the allocate queue (through the
Register_For_Allocates service). The allocate queue token uniquely identifies a
specific allocate queue.

Your server can also cancel its previous requests for notification (see “Cancelling
Event Notification” on page 2-19).

Using Get_Event to Retrieve Event Elements: Use the Get_Event service in
conjunction with the Set_Allocate_Queue_Notification service. To determine whether
a requested event has occurred, and, if so, the type of event, have your server
attempt to retrieve an event element from its event queue by calling the Get_Event
service.

Specifying Event Notification Types: Besides specifying minimum or maximum
thresholds (or both), you can further define your notification requests by specifying
whether notification is to be one-time or continuous (through the
event_notification_type parameter). One-time notification causes APPC/MVS to
monitor for a single occurrence of the specified event. After the event occurs,
APPC/MVS notifies the server (through the server’s event queue) and stops

0

15

5

10

20

25

30
35

40

45

50

55

APPC/MVS places
event elements
on the server's
event queue.

APPC/MVS places
event elements
on the server's
event queue.

Server's Event Queue

Event
Element
Created

Event
Element
Created

Event
Element
Created

Event
Element
Created

Event
Element
Created

Event
Element
Created

Maximum
Threshold

=40

Maximum
Threshold

=40

Minimum
Threshold

=15

Minimum
Threshold

=15

Allocate Queue Processing Over Time

Allocate
Queue
Size

Allocate
Queue
Size

MAX

AQTOKEN

10:45 AM

MIN

AQTOKEN

15

10:30 AM

MAX

AQTOKEN

40 40

10:00 AM

Figure 2-2. Relationship Between Allocate Queue and Event Queue

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-15

monitoring for the event. Continuous notification causes APPC/MVS to notify the
server every time the specified event occurs, and remains in effect until one of the
following happens:

v The server cancels the notification request

v The server unregisters from the allocate queue (causing APPC/MVS to cancel
the notification request)

v The APPC/MVS address space ends.

Specifying Thresholds: Use the event_code and event_qualifier parameters of
the Set_Allocate_Queue_Notification service to specify a minimum or maximum
threshold for a particular allocate queue.

v Use the event_code parameter to indicate whether the threshold is a minimum or
maximum threshold.

v Use the event_qualifier parameter to define a specific numeric value for the
threshold.

When you specify a maximum threshold, APPC/MVS notifies your server if the
number of allocate requests on the allocate queue increases to the threshold. For
example, if the server sets a maximum threshold of 50 allocate requests,
APPC/MVS notifies the server when the number of allocate requests on the allocate
queue increases to 50.

For maximum thresholds, the allocate queue must increase to trigger notification.
For example, assume an allocate queue exceeds a maximum threshold of 50
allocate requests, and then decreases below it (because the server has processed
some of the allocate requests). APPC/MVS notifies the server when the allocate
queue grows above 50 allocate requests, but does not notify the server a second
time when the allocate queue later decreases below the maximum threshold. If the
server requested continuous notification for this event, APPC/MVS does not notify
the server again until the number of allocate requests on the allocate queue
decreases to less than 50 and then increases to 50 again (as shown in Figure 2-3
on page 2-17).

Using Allocate Queue Services

2-16 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

When you specify a minimum threshold, APPC/MVS notifies your server if the
number of allocate requests on the allocate queue decreases to the threshold. For
example, if the server sets a minimum threshold of 1 allocate request, APPC/MVS
notifies the server when the number of allocate requests on the allocate queue
decreases to 1.

For minimum thresholds, the allocate queue must decrease to trigger notification.
For example, assume a server sets a minimum threshold of 1 allocate request for
an allocate queue. APPC/MVS notifies the server when the number of allocate
requests on the allocate queue decreases to 1. APPC/MVS does not notify the
server if the allocate queue increases from 0 to 1, but rather when it decreases
from 2 to 1. If the same server requested continuous notification for this event,
APPC/MVS would not notify the server again until the allocate queue increases to
more than 1 allocate request and then decreases to 1 (as shown in Figure 2-4 on
page 2-18).

0

15

5

10

20

25

30
35

40

45

50

55

Server's Event Queue

Event
Element
Created

Event
Element
Created

Event
Element
Created

Event
Element
Created

Maximum
Threshold

=50

Maximum
Threshold

=50

Allocate Queue Processing Over Time

Allocate
Queue
Size

Allocate
Queue
Size

Allocate queue
decreases below

maximum threshold.
No event element

is created.

Allocate queue
decreases below

maximum threshold.
No event element

is created.

MAXMAX

AQTOKENAQTOKEN

5050

3:45 PM3:00 PM

Figure 2-3. Maximum Threshold Reached

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-17

Threshold Already Reached: If a specified threshold is already reached when
your server calls the Set_Allocate_Queue_Notification service, APPC/MVS
immediately places an element on the server’s event queue.

For maximum thresholds, APPC/MVS places an element on the server’s event
queue if the allocate queue is currently equal to, or greater than, the specified
threshold. For example, if the server requests to be notified when an allocate queue
reaches 50 allocate requests, and the allocate queue already contains 60 allocate
requests, APPC/MVS immediately places an event element on the server’s event
queue.

For minimum thresholds, APPC/MVS considers the threshold to have been already
reached if the allocate queue contains less than or equal to the specified threshold.
Figure 2-4 shows that if the server specifies a minimum threshold of 1, and the
allocate queue contains no allocate requests, APPC/MVS immediately places an
event element on the server’s event queue.

Note that APPC/MVS’s handling of the “minimum threshold already reached”
situation allows for the possibility that APPC/MVS will queue an event element
without the allocate queue having actually decreased to the specified minimum
threshold. To determine whether a threshold has already been reached, the server
can call the Get_Event service immediately after calling the
Set_Allocate_Queue_Notification service.

0

1

2

3

Server's Event Queue

Event
Element
Created

Event
Element
Created

Event
Element
Created

Event
Element
Created

MINMIN

AQTOKENAQTOKEN

11

4:30 PM4:29 PM

Minimum
Threshold

=1

Minimum
Threshold

=1

Allocate Queue Processing Over Time

Allocate
Queue
Size

Allocate
Queue
Size

Allocate queue increases above
minimum threshold.

No event element is created.

Allocate queue increases above
minimum threshold.

No event element is created.

Figure 2-4. Minimum Threshold Reached

Using Allocate Queue Services

2-18 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Specifying Multiple Thresholds: A server can specify both a minimum and
maximum threshold for a particular allocate queue, but only one per call to the
Set_Allocate_Queue_Notification service. Therefore, the server must make a
separate call for each threshold it sets.

Also, a server can have one or more of the following combinations of threshold
types (minimum or maximum) and notification types (continuous or one-time) active
at the same time:
v Minimum/one-time
v Minimum/continuous
v Maximum/one-time
v Maximum/continuous.

A server cannot have more than one of each of the preceding combinations active
at the same time. For example, the server cannot have two maximum/continuous
requests active. The latest request overrides the earlier request (as explained in
“Modifying Thresholds”, which follows).

Modifying Thresholds: You can override a threshold that you set through a
previous notification request by re-issuing the Set_Allocate_Queue_Notification
service and specifying a new value for the event_qualifier parameter (the event
notification type must be the same; otherwise, APPC/MVS monitors for both
events). The new threshold value overrides the value set on the previous call to the
Set_Allocate_Queue_Notification service.

Example of Modifying a Threshold: To override a previous threshold, you must
specify the same event notification type that you specified on the request to be
overridden. For example, assume that a server requested to be notified when an
allocate queue increases to 25 allocate requests and specified one-time notification.
The server then calls the Set_Allocate_Queue_Notification service with the same
parameters, with the exception that the server changes the maximum threshold to
30. The second call overrides the first call.

Assume the same server again calls the Set_Allocate_Queue_Notification service.
This time, the server specifies a maximum threshold of 40 allocate requests, but
specifies continuous notification. APPC/MVS considers this call to be different from
the previous notification requests. As a result, APPC/MVS monitors the server’s
allocate queue for the following events:

v A maximum threshold of 30, for which the server is to receive one-time
notification

v A maximum threshold of 40, for which the server is to receive continuous
notification.

Cancelling Event Notification: You can cancel active notification requests
through the Set_Allocate_Queue_Notification service. You can cancel either a
particular request, or, through a single call to the Set_Allocate_Queue_Notification
service, cancel all of your server’s active notification requests for an allocate queue.

To cancel a particular notification request, call the Set_Allocate_Queue_Notification
service with parameters that match the request to be cancelled, with the exception
that the event_notification_type parameter is set to a value of atbcts_cancel_notify.
APPC/MVS stops monitoring for the particular event, and deletes from the server’s
event queue any elements that were queued because of the original notification
request.

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-19

To cancel all of its active notification requests for an allocate queue, call the
Set_Allocate_Queue_Notification service with:

v The event_notification_type parameter set to a value of atbcts_cancel_all_notify
and

v The allocate_queue_token parameter containing the allocate queue token
received from the Register_For_Allocates service.

APPC/MVS checks, but does not use, the other parameters in this case.
APPC/MVS stops monitoring for the allocate queue and deletes the event elements
related to this allocate queue from the server’s event queue.

Note that cancelling notification requests might cause APPC/MVS to cancel
outstanding calls to the Get_Event service. In the “cancel all” situation, APPC/MVS
cancels the server’s outstanding call to the Get_Event service when APPC/MVS is
not monitoring any other allocate queues for the server. In the “cancel a particular
request” situation, APPC/MVS cancels an outstanding call to the Get_Event service
when the server has no other outstanding requests for notification.

Event Notification Clean-Up: When a server unregisters from an allocate queue,
APPC/MVS cancels all the server’s active notification requests for the allocate
queue.

Unregistering from the allocate queue also causes APPC/MVS to purge the server’s
event queue of any elements related to this allocate queue. Also, if the server has
an outstanding call to the Get_Event service, APPC/MVS cancels the call.

If the event notification requests being cancelled are the only ones the server has
requested, and the server has an outstanding Get_Event request, the Get_Event
service will return to the server with return code 16 (atbcts_request_unsuccessful)
and reason code 20 (atbcts_request_cancelled).

Retrieving Event Elements
To retrieve the next event element on an event queue, call the Get_Event service.
You can have only one outstanding call to the Get_Event service at a time. On the
call to Get_Event, specify the event_get_type and notify_type parameters to
indicate how APPC/MVS is to process the call, as follows:

v Specify event_get_type to indicate whether the Get_Event service can wait for a
new event element to be added to the event queue, if the event queue currently
contains no elements (Get_Event waits under the caller’s task.)

v Specify notify_type to indicate whether the Get_Event call is to be processed
synchronously or asynchronously.

If you set event_get_type to 1 (atbcts_immediate), APPC/MVS returns an event
element if one is immediately available. If there are no event elements, APPC/MVS
provides return and reason codes that show the call was unsuccessful because no
event elements were available. If you specify an event_get_type of 2 (atbcts_wait),
APPC/MVS waits until an event element is available before returning control.

If you call Get_Event synchronously, APPC/MVS does not return control until
Get_Event completes, or you implicitly cancel the request (for example,
unregistering from the allocate queue causes APPC/MVS to cancel an outstanding
Get_Event request for the queue). If you call Get_Event asynchronously,
APPC/MVS returns control immediately, but monitors the event queue for an event
element. APPC/MVS notifies the server by posting the specified ECB when the
event for which notification was requested occurs.

Using Allocate Queue Services

2-20 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table 2-4 shows the results for different combinations of notify_type and
event_get_type:

Table 2-4. Results of Notify_Type/Event_Get_Type Combinations

Notify_Type
Value:

Event_Get_Type Value:

atbcts_immediate atbcts_wait

NONE Get_Event returns an event
element if one is available, or
return code 16
(atbcts_request_unsuccessful) and
reason code 30
(atbcts_no_event_available), if the
event queue is currently empty.

The caller waits until an event
element is retrieved, or this call is
cancelled implicitly.

ECB Control returns to the caller
immediately, while APPC/MVS
processes the Get_Event call
asynchronously. If the event
element is available, Get_Event
returns the element. Otherwise, the
caller receives return code 16
(atbcts_request_unsuccessful) and
reason code 30
(atbcts_no_event_available).

Control returns to the caller
immediately, while APPC/MVS
processes the Get_Event call
asynchronously. When an event
element is available, Get_Event
posts the caller’s ECB.

Specifying the Event Buffer: To receive notification of an event, your server must
supply a buffer on its call to Get_Event. APPC/MVS returns the event element in
the event buffer.

The event buffer you specify must be large enough to contain the event element. If
you specify a buffer that is not large enough, APPC/MVS sets the
event_element_size parameter to the length it requires to satisfy the request. The
Get_Event service returns to the server with return code 16
(atbcts_request_unsuccessful) and reason code 41 (atbcts_buffer_too_small). The
server can create a larger event buffer and call the Get_Event service again to
retrieve the event element successfully.

If you specify a buffer large enough to contain the event element, APPC/MVS sets
the event_element_size parameter to the size of the event element that was
returned, and the server receives a return code of zero.

Like most parameters returned from APPC/MVS callable services, the event buffer
must reside in the caller’s primary address space and be accessible to the caller’s
PSW key.

Effect of Unregister_For_Allocates: A call to the Unregister_For_Allocates
service implicitly cancels a Get_Event if the call leaves the caller without allocate
queues or outstanding calls to the Set_Allocate_Queue_Notification service.

Allowing the Allocate Queue to Persist
Use the Set_Allocate_Queue_Attributes service to indicate whether APPC/MVS is to
maintain an allocate queue for which no servers are registered. Use this service
when your server must stop serving an allocate queue for some interval of time,
and will later resume serving the queue.

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-21

When calling the Set_Allocate_Queue_Attributes service, a server specifies a “keep
time” for the allocate queue. The keep time is the number of seconds an allocate
queue is maintained after the last server of the allocate queue unregisters. The
server should set the allocate queue keep time only if it intends to resume serving
the allocate queue within this time limit.

For example, you can use the Set_Allocate_Queue_Attributes service in situations
where your server is to be restarted periodically. The server could register for a
particular allocate queue and call the Set_Allocate_Queue_Attributes service,
specifying a keep time for the allocate queue that would allow enough time for the
server to be taken down and brought back up. The server could then re-register for
the allocate queue, and resume receiving allocate requests.

To have an allocate queue cleaned up immediately after its last server unregisters,
specify zero for the allocate queue keep time (or take the default of zero by not
calling the Set_Allocate_Queue_Attributes service). In response, APPC/MVS rejects
the allocate requests that reside on the queue with sense code X’084C0000’
(TP_Not_Available_No_Retry). APPC/MVS attempts to place any new allocate
requests that enter the system on another appropriate allocate queue if one exists,
or attempts to schedule them. If there are no other appropriate allocate queues for
inbound allocate requests, and they cannot be scheduled, APPC/MVS rejects the
allocate requests with sense code X’084C0000’ (TP_Not_Available_No_Retry).

If you specify a keep time for an allocate queue, however, APPC/MVS maintains all
inbound allocate requests received for the server for the specified amount of time.
During this period, APPC/MVS continues to add new inbound allocate requests for
the server to the allocate queue.

A server can re-register for the allocate queue by calling Register_For_Allocates
with the same parameter values it specified on its initial Register_For_Allocates call.
The server must re-register for the allocate queue, however, before the specified
keep time is exceeded, to serve any previously queued requests before they are
purged with sense code X’084C0000’ (TP_Not_Available_No_Retry).

When you specify a keep time, specify a value large enough to allow the server
time to re-register for the allocate queue. Do not set the value too high, however,
because the allocate requests will remain idle on the allocate queue, causing users
to wait for their work to complete.

An allocate queue’s keep time is zero by default. Only one keep time can be in
effect for an allocate queue at a time, regardless of how many servers have
registered for the queue. An allocate queue keep time specified on the
Set_Allocate_Queue_Attributes service overrides the previous allocate queue keep
time, if any. Also, if the last server of an allocate queue unregisters and re-registers
for the same allocate queue before the allocate queue keep time has been
exceeded, APPC/MVS resets the keep time to the value that was specified on the
last call to the Set_Allocate_Queue_Attributes service.

Use of Unregister_For_Allocates
Use the Set_Allocate_Queue_Attributes service with the Unregister_For_Allocates
service. When the last server of an allocate queue calls Unregister_For_Allocates,
APPC/MVS checks the allocate queue’s keep time, if any, and processes the queue
as follows:

v If the keep time is zero, APPC/MVS purges the allocate queue (that is, the
allocate requests are rejected).

Using Allocate Queue Services

2-22 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

v If the keep time is greater than zero, APPC/MVS maintains the allocate queue for
the specified amount of time. During this time, APPC/MVS continues to add new
inbound allocate requests to the allocate queue.

Multi-Tasking Servers
Because of the potentially heavy volume of transactions they will be serving,
servers are likely to multi-task to handle multiple requests in parallel. This section
lists common multi-tasking models you might consider for use in your server
applications. The discussion refers to three models:
v Model One: “Empowerment”
v Model Two: “Management-Directed”
v Model Three: “Unmanaged”.

Model One — Empowerment
In this model, the main task registers for inbound allocate requests and attaches
one or more subtasks to handle each conversation.

Figure 2-5 on page 2-24 shows this type of multi-tasking server. In this case, the
server registers for two different TP names (Steps 1 and 2), and dedicates two of its
three subtasks to handling allocate requests from TPA. The main task attaches a
third subtask to handle requests from TPB. The main task passes the allocate
queue tokens it received from Register_For_Allocates (AQTOKEN1 and
AQTOKEN2) to the subtasks so that they can begin processing requests from each
allocate queue.

When invoked, each subtask calls the Receive_Allocate service (Steps 3 through
5), specifying the allocate queue token it received from the main task. Each subtask
can now process requests from the appropriate allocate queue.

At the end of server processing, the main task unregisters from its allocate queues
(Step 6).

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-23

Model Two — Management-Directed
This model is similar to the empowerment model, with the exception that the main
task also calls the Receive_Allocate service. The main task passes the
conversation IDs it receives to the subtasks (instead of allowing the subtasks to call
Receive_Allocate).

This model provides a greater degree of centralized control within the main task. In
this case, however, the main task must monitor its subtasks periodically to
determine which subtasks are available to process a conversation.

Model Three — Unmanaged
This model is the opposite of the management-directed model. The main task
attaches one or more subtasks which call Register_For_Allocates and
Receive_Allocate. While this model poses more difficulties than the preceding
models (for example, communication between the subtasks, if any, must be
managed between the subtasks), you might find this model suitable to your
particular application.

Main Task

Subtask 1 Subtask 2 Subtask 3

REGISTER (TPA, LUA,
AQTOKEN1,..)

REGISTER (TPA, LUA,
AQTOKEN1,..)

REGISTER (TPB, LUB,
AQTOKEN2,..)

REGISTER (TPB, LUB,
AQTOKEN2,..)

(Attach Subtasks 1,2,3)

UNREGISTER (all)

RECEIVE ALLOCATE
(AQTOKEN1)

RECEIVE ALLOCATE
(AQTOKEN1)

RECEIVE ALLOCATE
(AQTOKEN1)

RECEIVE ALLOCATE
(AQTOKEN1)

RECEIVE ALLOCATE
(AQTOKEN2)

RECEIVE ALLOCATE
(AQTOKEN2)

1

2

6

3 4 5

Figure 2-5. Example of a Multi-tasking Server Address Space

Using Allocate Queue Services

2-24 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

General Considerations for Multi-Tasking Servers
v Initialization.

Regardless of the multi-tasking model you use, the server’s main task should
perform the initialization tasks, such as allocating common resources or issuing
messages to operators.

v Security.

Consider the potential risks of running multiple users in the same address space.

v Workload balancing.

Consider using the allocate queue services described in “Receiving Notification of
Events” on page 2-13 to manage the installation’s workload efficiently. To simplify
workload balancing, have the same task perform the event notification functions
for the server.

v Processing protected conversations.

Servers designed following the empowerment and unmanaged models may
process protected conversations (conversations with a synchronization level of
syncpt) as they would any other conversation, as long as each server subtask
processes only one conversation at a time. Servers that are designed following
the management-directed model, however, must register with registration
services as a resource manager to process protected conversations using
privately managed contexts.

If you want to code a management-directed model server to manage protected
conversations, you need to understand the concepts and requirements for
resource recovery in z/OS MVS Programming: Resource Recovery. Design this
server and its subtasks to use allocate queue services, along with registration
and context callable services, in the following sequence:

1. Register for TP/LU pairs through the Register_For_Allocates service. The LUs
for which the server registers must be defined as capable of handling
conversations with a synchronization level of syncpt. See the session
management section of z/OS MVS Planning: APPC/MVS Management for
further information about enabling LUs for protected conversation support.

2. Register with registration services through the Register_Resource_Manager
service, supplying a resource manager name for this server. The service
returns a resource manager token that the server uses on subsequent calls
to registration and context services.

3. Call the Set_Exit_Information service to cause the server resource manager
state to change to SET state. The server is now in the correct state with
context services to issue context callable services.

4. Create a privately managed context through the Begin_Context service. The
service returns a context token for the newly created context.

5. Switch to the newly created context by issuing a call to the Switch_Context
service. After the service returns, the privately managed context is the current
context.

6. Receive an inbound protected conversation by issuing the Receive_Allocate
service. After the service returns, the identifier of this protected logical unit of
work is associated with the privately managed context.

7. Attach a subtask to process the protected conversation. The server must
pass to the subtask not only the conversation ID, but also the context token
for the privately managed context. Once the subtask receives control, it must
issue the Switch_Context service, specifying that context token.

The server may then repeat steps 4 through 7 to receive additional allocate
queue requests, each with a different context, for additional subtasks to process.

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-25

For servers, only one protected conversation may be associated with a context at
one time; so a server may issue another Receive_Allocate call before
deallocating a previous allocate request only through the use of privately
managed contexts.

Managing Protected Conversations
To manage more than one protected conversation at a time, a server must register
as a resource manager and use privately managed contexts to represent inbound
allocate requests. Using privately managed contexts is only necessary for servers
that are designed following the management-directed model. Other model types
may process protected conversations as they would any other conversation, as long
as each server subtask processes only one conversation at a time.

Note that designing and coding a server to act as a resource manager is relatively
difficult. If you want to code a management-directed server to manage protected
conversations, you need to:

v Understand the concepts and requirements for resource recovery in z/OS MVS
Programming: Resource Recovery.

v Use the guidelines listed in “General Considerations for Multi-Tasking Servers” on
page 2-25 to design and code a management-directed server to act as a
resource manager.

Accounting for Server Usage
Your installation can track the use of server-specific resources through the SMF
record type 33, subtype 2. Also, APPC/MVS servers can add client-specific
information to these records to simplify accounting tasks.

Tracking Server-Specific Resources through SMF
When either partner program deallocates an APPC/MVS conversation, SMF writes
a type 33, subtype 2 record. SMF provides detailed information about both partners,
their associated LUs, and the amount of data transferred over the network. For a
description of SMF accounting for APPC/MVS servers, see the section on
APPC/MVS accounting in z/OS MVS System Management Facilities (SMF).

Adding User Data to Accounting Records
Servers can write up to 255 bytes of user-defined data to these accounting records
through the Set_Conversation_Accounting_Information service. The user data also
appears in the user data field that the Extract_Information service returns when
programs extract information about specific conversations.

You can use the user data field to charge resources to a specific conversation, or to
correlate outbound conversations to inbound conversations, by specifying a
conversation ID in the user data, for example.

For information about using the Set_Conversation_Accounting_Information service,
see z/OS MVS Programming: Writing Transaction Programs for APPC/MVS.

Using Allocate Queue Services

2-26 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Performance Considerations for Allocate Queue Services
The relative performance of APPC/MVS callable services varies depending on the
functions that the callable service performs. For example, services that call VTAM
or cause the movement of data buffers involve a greater number of internal
instructions.

Table 2-5 provides a summary of performance considerations for individual
APPC/MVS allocate queue callable services. For an overview of performance
considerations for APPC/MVS TP callable services, see z/OS MVS Programming:
Writing Transaction Programs for APPC/MVS.

Table 2-5. Performance Considerations for Allocate Queue Services

APPC/MVS Service Calls
VTAM

Causes
DASD I/O

Causes
buffer
moves

Calls RACF Creates
SMF record

Register_For_Allocates No See Note No RACROUTE
REQUEST=

AUTH

No

Receive_Allocate No No No No No

Unregister_For_Allocates No No No No No

Query_Allocate_Queue No No No No No

Set_Allocate_Queue_Notification No No No No No

Get_Event No No No No No

Set_Allocate_Queue_Attributes No No No No No

Note: Reads from the side information file if you specify a symbolic destination name.

Installing APPC/MVS Servers
This section is provided mainly as background information. In most cases, the
server writer does not have to do more than step 1. You might, however, want to
check with the system programmer and security administrator to make sure that
other steps have been taken.

For detailed information on configuring APPC/MVS, see z/OS MVS Planning:
APPC/MVS Management.

To install your server, do the following:

1. Install the server program on the z/OS system. Unauthorized server programs
can reside in any library. Authorized server programs must reside in an
authorized library.

2. The system programmer defines NOSCHED LUs, if needed.

3. The system programmer defines TP profile data sets, if needed. Include
database tokens (dbtokens) for servers.

4. The security administrator does the following:

a. For started servers, assigns user IDs by modifying the RACF started
procedures table (module ICHRIN03). For information about the RACF
started procedures table, see z/OS SecureWay Security Server RACF
Security Administrator’s Guide.

b. Defines RACF profiles in APPCSERV class, and protects the APPCSERV
class with UACC(NONE). For example:

Using Allocate Queue Services

Chapter 2. Using Allocate Queue Services 2-27

RDEFINE APPCSERV dbtoken.tpname UACC(NONE)

where dbtoken identifies the client’s local LU, and tpname is the name of the
client TP.

c. Activates the APPCSERV class, and activates RACLIST processing for the
class. For example:
SETROPTS CLASSACT(APPCSERV) RACLIST(APPCSERV)

d. Grants READ access to individual server user IDs for the client’s profile in
the APPCSERV class. The security administrator could use the following
RACF command:
PERMIT dbtoken.tpname CLASS(APPCSERV) ACCESS(READ) ID(userid)

For information about defining RACF security classes and using RACF
commands, see z/OS SecureWay Security Server RACF Security
Administrator’s Guide.

5. Tuning: The system programmer can specify SRM tuning parameters for server
address spaces, if desired.

Diagnosing Problems with APPC/MVS Servers
Using the API trace facility, programmers can collect data about each call that an
APPC/MVS server issues for any APPC/MVS allocate queue service, except for
Get_Event and Set_Allocate_Queue_Notification. For the API trace facility to collect
trace data for these services, the server must specify a valid allocate queue token
on those services that accept an allocate queue token as input.

See z/OS MVS Programming: Writing Transaction Programs for APPC/MVS for
more information about the API trace facility.

Using Allocate Queue Services

2-28 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Chapter 3. Invocation Details for Allocate Queue Services

Objective

This chapter describes the available programming languages, syntax and
linkage conventions, and parameter types for the APPC/MVS allocate queue
callable services.

The figure below shows a partial list of high-level language compilers that support
APPC/MVS calls. Calls can be made with other compiler levels and other compiler
products that meet the requirements and linkage conventions described in this
chapter.

To use allocate queue services, programs must run in 31-bit addressing mode. Note
that this requirement might limit some language functions you can use.

Table 3-1. Some High-Level Language Compilers for APPC/MVS Calls

Language Compiler

C C/370 Compiler Version 1, Release 2.0

COBOL VS COBOL II, Release 2.0

FORTRAN VS FORTRAN Compiler Version 2, Release 3.0

PL/I OS PL/I Compiler Version 2, Release 2.1

REXX TSO/E Version 2, Release 5

Interface Definition Files (IDFs)
IBM provides IDFs (also called pseudonym files or headers) for the preceding high
level languages. IDFs include prototypes for each call and constant declarations for
parameter, return code, and reason code values.

“Interface Definition Files (IDFs) for APPC/MVS Services” on page 3-4 lists the IDFs
available for use with APPC/MVS allocate queue services.

Syntax and Linkage Conventions for Allocate Queue Services
All allocate queue callable services have a general calling syntax as follows:
CALL routine_name (parameters,reason_code,return_code)

Some specific calling formats for languages that can call APPC/MVS services are:

COBOL CALL “routine_name” USING
parm1,parm2,...reason_code,return_code

FORTRAN CALL routine_name (parm1,parm2,...reason_code,return_code)

C routine_name (parm1,parm2,...reason_code,return_code)

PL/I CALL routine_name (parm1,parm2,...reason_code,return_code)

REXX ADDRESS APPCMVS “routine_name parm1 parm2...reason_code
return_code”

For REXX, enclose the routine name and all parameters within one
pair of single or double quotes. Parameters must be initialized to

© Copyright IBM Corp. 1993, 2001 3-1

appropriate values. The host command environment resolves the
parameter values. For more information, see z/OS TSO/E REXX
Reference.

Assembler Call macro
CALL routine_name,(parm1,parm2,...reason_code,return_code),VL

Note that all allocate queue services return (as parameters) a return and reason
code that shows the result of the call.

Linkage Conventions
Callers must use the following linkage conventions for all allocate queue callable
services:

v Register 1 must contain the address of a parameter list, which is a list of
consecutive words, each containing the address of a parameter to be passed.
The last word in this list must have a 1 in the high-order (sign) bit.

v Register 13 must contain the address of an 18-word save area.

v Register 14 must contain the return address.

v Register 15 must contain the entry point address of the service being called.

v If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must
all be set to zero.

On return from the service, general and access registers 2 through 14 are restored
(registers 0, 1 and 15 are not restored).

Any high-level language that generates this type of interface can be used to call
allocate queue services.

Parameter Description for Allocate Queue Services
All the parameters of the allocate queue callable services are required positional
parameters. When you call a service, you must specify all the parameters in the
order listed. APPC/MVS checks all parameters for valid values, regardless of
whether the parameters are used in call processing. Even though a language may
allow parameters to be omitted, APPC/MVS services do not.

Some parameters do not require values and allow you to substitute zeroes or a
string of blanks for the parameter. For example, if you do not specify a symbolic
destination on the Register_For_Allocates call, you must set the Sym_dest_name
parameter to eight blanks. The descriptions of the parameters identify those which
can be replaced by blanks or zeroes, and when to do so.

Each service has returned to it (through parameters) a return and reason code that
shows the result of the call. If the return code is set to zero or decimal 64,
APPC/MVS does not set the reason code (and thus it need not be checked). If the
return code is a non-zero value other than decimal 64, APPC/MVS sets the reason
code to show the reason for the bad return code.

In the descriptions of services in this book, each parameter is described as supplied
or returned:

Supplied
You supply a value for the parameter in the call.

Returned
The service returns a value in the named parameter when the call is
finished (for example, return_code).

Invocation Details

3-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Each parameter is also described in terms of its data type, character set, and
length:

Data type
Either integer, character string, or structure.

Character set
Applies only to parameters whose values are character strings and governs
the values allowed for that parameter. Possible character sets are:

v No restriction

There is no restriction on the byte values contained in the character
string.

v Type A EBCDIC

The string may contain only uppercase alphabetics, numerics, and
national characters (@, $, #) and must begin with an alphabetic or
national character. Use of @, $, and # is discouraged because those
characters display differently on different national code pages.

v 01134

The string may contain uppercase alphabetics or numerics, with no
restriction on the first character.

v 00640

The string may contain upper- or lowercase alphabetics, numerics, or
any of 19 special characters with no restriction on the first character.

Note: APPC/MVS does not allow blanks in 00640 character strings.

For more detailed information about the characters in each character set,
see “Appendix A. Character Sets” on page A-1.

Length
Depends on the data type of the parameter:

v For an integer item, the length shows the size of the field in bits.

v For a character string parameter, the length value shows the number of
characters that may be contained in a character type parameter. The
length may specify a single number or a minimum and maximum
number.

v For a structure parameter, the length value shows the size of the
structure in bytes, or a minimum and maximum size if the size of the
structure is variable.

Required Modules
Programs that use APPC/MVS callable services must have addressability to
modules in SYS1.CSSLIB that define the services. You can use either of the
following methods described here to access APPC/MVS callable services.

v Method One — Have your program issue the MVS LOAD macro for the
APPC/MVS service to obtain its entry point address. Use that address to call the
APPC/MVS service.

v Method Two — Link-edit one or more of the following modules from
SYS1.CSSLIB with any program that issues APPC/MVS services:

– ATBPBI — with programs that issue CPI Communications calls or TP
conversation services

– ATBATP — with programs that issue APPC/MVS advanced TP services

Invocation Details

Chapter 3. Invocation Details for Allocate Queue Services 3-3

– ATBCTS — with programs that issue APPC/MVS allocate queue services,
Reject_Conversation, or Set_Conversation_Accounting_Information.

– ATBCSS — with programs that issue APPC/MVS system services.

If you use this second method, you must again link-edit these modules and any
load modules containing copies of them with your APPC/MVS applications after
new releases of MVS are installed, or maintenance is applied that affects
APPC/MVS callable services. In this case, provide a post-install job to re-link-edit
the modules with your APPC/MVS applications.

Additional language-specific statements may be necessary so that language
compilers can provide the proper assembler interface. Other programming notation,
such as variable declarations, are also language-dependent.

Versions of Callable Services
APPC/MVS allocate queue callable services have a version number as the last
character of the call name (for example, ATBRFA2). That number corresponds to
the version of APPC/MVS in which the call was introduced.

To determine which calls are valid on a system, you can obtain the current
APPC/MVS version number from the APPC/MVS Version service. For more
information about the APPC/MVS Version service, see z/OS MVS Programming:
Writing Transaction Programs for APPC/MVS.

Interface Definition Files (IDFs) for APPC/MVS Services
IBM provides IDFs (also called pseudonym files or headers) that define variables
and values for parameters of APPC/MVS services. IDFs are available for different
languages, and can be included or copied from a central library into programs that
call APPC/MVS services.

For a list of the IDFs available for use with CPI-C, LU 6.2, and APPC/MVS services,
see z/OS MVS Programming: Writing Transaction Programs for APPC/MVS.

IBM provides the following IDFs for programs that call APPC/MVS allocate queue
services, the Reject_Conversation service or the
Set_Conversation_Accounting_Information service:

Language SYS1.MACLIB Member

Assembler ATBCTASM in SYS1.MACLIB

Table 3-2. IDFs for Allocate Queue Services

Language In member:

C ATBCTC in SYS1.SIEAHDR.H

Note: ATBCTC is also shipped in the z/OS UNIX System Services HFS directory
/usr/include.

COBOL ATBCTCOB in SYS1.SIEAHDR.H

FORTRAN ATBCTFOR in SYS1.SIEAHDR.H

PL/I ATBCTPLI in SYS1.SIEAHDR.H

REXX ATBCTREX in SYS1.SIEAHDR.H

Invocation Details

3-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Chapter 4. APPC/MVS Allocate Queue Services

Objective

This chapter provides the syntax, parameter descriptions, and return and
reason codes for the APPC/MVS allocate queue callable services.

The services are:
v “Get_Event”
v “Query_Allocate_Queue” on page 4-6
v “Receive_Allocate” on page 4-11
v “Register_for_Allocates” on page 4-18
v “Set_Allocate_Queue_Attributes” on page 4-25
v “Set_Allocate_Queue_Notification” on page 4-29
v “Unregister_For_Allocates” on page 4-34.

Get_Event
APPC/MVS servers use the Get_Event service to retrieve the next event element
from the server’s event queue.

Environment for Get_Event
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Restrictions
When using this service, observe the following restrictions:

v Programs can have only one outstanding call to the Get_Event service at a time.
If a program attempts to call the Get_Event service while the program has
another Get_Event call outstanding, APPC/MVS rejects the subsequent call.

v Programs that call the Get_Event service while in task mode should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the section on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Input Register Information
Before calling the Get_Event service, the caller must ensure that the following
GPRs contain the specified information:

Register Contents

1 Address of the parameter list

© Copyright IBM Corp. 1993, 2001 4-1

13 Address of a standard 18-word save area

14 Return address

15 Entry point address of the service being called.

Before calling the Get_Event service, the caller must ensure that the following
access registers (ARs) contain the specified information:

Register Contents

1 0

13 - 15 0

Output Register Information
When control returns to the caller of the Get_Event service, the general purpose
registers (GPRs) contain:

Register Contents

0 - 1 Used as work registers by the system

2 - 14 Unchanged

15 Used as a work register by the system

When control returns to the caller of the Get_Event service, the access registers
(ARs) contain:

Register Contents

0 - 1 Used as work registers by the system

2 - 14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Syntax Format for Get_Event
The figure below shows the syntax of the CALL statement for the Get_Event
service. You must code all parameters on the CALL statement in the order shown.

CALL ATBGTE2(
Notify_type,
Event_get_type
Event_code,
Event_timestamp,
Event_buffer_length,
Event_buffer,
Event_element_size,
Reason_code,
Return_code

);

Figure 4-1. Syntax for Get_Event

Get_Event

4-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Parameters for Get_Event
The following section describes the parameters you specify when calling the
Get_Event service.

Notify_type
Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

No notification is requested. APPC/MVS processes this call synchronously,
and returns control to the caller when processing is complete. APPC/MVS
sets all returned parameters on return to the caller. To specify no notification,
set this parameter to a four-byte structure that contains binary zeroes.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set this parameter to
an eight-byte structure that contains a fullword binary one (X'00000001'),
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the caller’s home address space.

When you specify an ECB, APPC/MVS returns control to the caller before
processing is complete, with only the return code set. If APPC/MVS accepts
the asynchronous request, it sets the return code to 0 to show that it is
processing the service asynchronously. APPC/MVS fills in the other returned
parameters during asynchronous processing, and posts the specified ECB
when it has set all the returned parameters. The completion code field in the
ECB contains the return code for the service. APPC/MVS places the reason
code, if any, in the server’s reason_code parameter.

Event_get_type
Supplied parameter
v Type: Integer
v Length: 32 bits

Specifies whether the call is allowed to wait for a new event element to be
added to the event queue, if the event queue currently contains no elements.

Valid values for this parameter are:

Value Meaning

1 atbcts_immediate

Control is to be returned to the caller immediately, regardless of
whether an event element can be retrieved. If an event element
is not immediately available, APPC/MVS sets return_code to 16
(atbcts_request_unsuccessful) and reason_code to 30
(atbcts_no_event_available).

2 atbcts_wait

This call remains active until an event element can be retrieved,
or the call is cancelled.

Event_code
Returned parameter

Get_Event

Chapter 4. APPC/MVS Allocate Queue Services 4-3

v Type: Integer
v Length: 32 bits

Contains a value that indicates which event has occurred.

Possible values returned for this parameter are:

Value Meaning

1 atbcts_allocate_queue_min

The allocate queue indicated in the event element has
decreased to its minimum threshold.

2 atbcts_allocate_queue_max

The allocate queue indicated in the event element has
increased to its maximum threshold.

Event_timestamp
Returned parameter
v Type: Character string
v Char Set: N/A
v Length: 8 bytes

Contains a timestamp that shows when the event occurred. This timestamp is in
the format provided by the STORE CLOCK (STCK) assembler instruction.

Event_buffer_length
Supplied parameter
v Type: Integer
v Length: 32 bits

Specifies the length, in bytes, of the event buffer (the event_buffer parameter)
where the event element is to be placed.

Event_buffer
Supplied/Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: Variable (specified in event_buffer_length parameter)

Specifies an area of storage where the event element is to be placed. The
event buffer must reside in the caller’s primary address space and be
accessible to the caller’s PSW key.

If the buffer you specify is large enough to contain the event element,
APPC/MVS places the event element in this buffer on return to the caller.
APPC/MVS sets the event_element_size parameter to the length of the storage
used to contain the returned element.

If the buffer you specify is not large enough, APPC/MVS fails the Get_Event
request with return code 16 (atbcts_request_unsuccessful) and reason code 41
(atbcts_buffer_too_small). APPC/MVS sets the event_element_size parameter
to the length of storage it requires to satisfy this request. To retrieve the event
element successfully, specify an event buffer equal to the event_element_size
and call the Get_Event service again.

To determine whether the event was a minimum or maximum threshold, check
the value returned in the event_code parameter. Table 4-1 on page 4-5 shows

Get_Event

4-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

the contents of event_buffer, based on the event_code value:

Table 4-1. Relationship Between Event_code and Event_buffer

Event_code
Value:

Event_buffer Contents:

1 The event buffer contains two fields (12 bytes):

v Allocate_queue_token (character string - 8 bytes). Indicates the
allocate queue for which this event applies.

v Minimum queue size (integer - 32 bits). Indicates that the specified
allocate queue decreased to this size.

2 The event buffer contains two fields (12 bytes):

v Allocate_queue_token (character string - 8 bytes). Indicates the
allocate queue for which this event applies.

v Maximum queue size (integer - 32 bits). Indicates that the specified
allocate queue increased to this size.

Event_element_size
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the length of the event element that was retrieved, or the length that
APPC/MVS requires to satisfy this request (if the call is unsuccessful).

To determine whether the request was successful, check the value in the
return_code parameter, as follows:

v If return_code contains zero, the event_buffer parameter contains the event
element. APPC/MVS sets event_element_size to the length of the event
element that was returned.

v If return_code contains 16 (atbcts_request_unsuccessful), and reason_code
contains 41 (atbcts_buffer_too_small), event_element_size contains the
length required to satisfy the request. To retrieve the event element
successfully, create a larger event buffer equal to this length and call the
Get_Event service again.

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains additional information about the result of the call when the return_code
parameter contains a non-zero value other than decimal 64
(atbcts_appc_not_available).

Table 4-2 on page 4-6 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the result of the call. If the return_code parameter contains zero or
decimal 64 (atbcts_appc_not_available), there is no reason code. For other
return codes, check the reason_code parameter for additional information about
the result of the call.

Get_Event

Chapter 4. APPC/MVS Allocate Queue Services 4-5

Table 4-2 lists the valid return and reason codes for the Get_Event service.

Table 4-2. Return and Reason Codes for Get_Event

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

0 atbcts_ok

8 atbcts_parameter_error

18 atbcts_inval_notify_type

37 atbcts_inval_event_get_type

16 atbcts_request_unsuccessful

7 atbcts_parameter_inaccessible

8 atbcts_cannot_hold_locks

20 atbcts_request_cancelled

30 atbcts_no_event_available

31 atbcts_event_notify_cancelled

32 atbcts_get_event_outstanding

33 atbcts_notify_not_set

41 atbcts_buffer_too_small

32 atbcts_service_failure

16 atbcts_appc_service_failure

64 atbcts_appc_not_available

For more detailed information about these return codes and reason codes, refer
to “Appendix B. Explanation of Return and Reason Codes” on page B-1.

Abend Codes for Get_Event
The caller might encounter abend X'EC7' with either of the reason codes shown
below:

Table 4-3. Abend Codes for Get_Event

Abend Code
(Hexadecimal)

Reason Code
(Hexadecimal)

Description

X'EC7' X'00140009' The number of parameters specified
is incorrect.

X'EC7' X'0014000A' APPC/MVS cannot access one or
more of the specified parameters.

See z/OS MVS System Codes for an explanation and response for these codes.

Query_Allocate_Queue
APPC/MVS servers use the Query_Allocate_Queue service to obtain commonly
needed information about the status of an allocate queue for which the caller is
registered.

Get_Event

4-6 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Environment for Query_Allocate_Queue
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Restrictions
Programs that call the Query_Allocate_Queue service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Input Register Information
Before calling the Query_Allocate_Queue service, the caller must ensure that the
following GPRs contain the specified information:

Register Contents
1 Address of the parameter list
13 Address of a standard 18-word save area
14 Return address
15 Entry point address of the service being called.

Before calling the Query_Allocate_Queue service, the caller must ensure that the
following access registers (ARs) contain the specified information:

Register Contents
1 0
13 - 15 0

Output Register Information
When control returns to the caller of the Query_Allocate_Queue service, the general
purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

When control returns to the caller of the Query_Allocate_Queue service, the access
registers (ARs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

Query_Allocate_Queue

Chapter 4. APPC/MVS Allocate Queue Services 4-7

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Syntax Format for Query_Allocate_Queue
The figure below shows the syntax of the CALL statement for the
Query_Allocate_Queue service. You must code all parameters on the CALL
statement in the order shown.

Parameters for Query_Allocate_Queue
The following section describes the parameters you specify when calling the
Query_Allocate_Queue service.

Notify_type
Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

No notification is requested. APPC/MVS processes this call synchronously,
and returns control to the caller when processing is complete. APPC/MVS
sets all returned parameters on return to the caller. To specify no notification,
set this parameter to a four-byte structure that contains binary zeroes.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set this parameter to
an eight-byte structure that contains a fullword binary one (X'00000001'),
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the caller’s home address space.

When you specify an ECB, APPC/MVS returns control to the caller before
processing is complete, with only the return code set. If APPC/MVS accepts
the asynchronous request, it sets the return code to 0 to show that it is
processing the service asynchronously. APPC/MVS fills in the other returned
parameters during asynchronous processing, and posts the specified ECB
when it has set all the returned parameters. The completion code field in the

CALL ATBQAQ2(
Notify_type,
Allocate_queue_token,
TP_name_length,
TP_name,
Local_LU_name,
Allocate_queue_size,
Allocate_queue_oldest,
Last_rec_alloc_issued
Last_rec_alloc_returned
Reason_code,
Return_code

);

Figure 4-2. Syntax for Query_Allocate_Queue

Query_Allocate_Queue

4-8 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

ECB contains the return code for the service. APPC/MVS places the reason
code, if any, in the server’s reason_code parameter.

Allocate_queue_token
Supplied parameter
v Type: Character string
v Length: 8 bytes

Specifies the allocate queue token that indicates the particular allocate queue
on which the query is to be performed. (The allocate queue token is returned as
output from a successful call to the Register_For_Allocates service.)

TP_name_length
Returned parameter
v Type: Integer
v Length: 32 bits
v Range: 1-64

Specifies the length of the data contained in the TP_name parameter.

TP_name
Returned parameter
v Type: Character string
v Char Set: 00640 or Type A (Type A if the TP is protected by RACF)
v Length: 1 - 64 bytes

Contains the TP name specified on the Register_For_Allocates call for this
allocate queue.

Local_LU_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Contains the name of the local LU associated with the allocate requests in the
allocate queue.

Allocate_queue_size
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the number of allocate requests that currently reside on the specified
allocate queue.

Allocate_queue_oldest
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the age (in seconds) of the oldest allocate request on the allocate
queue.

Last_rec_alloc_issued
Returned parameter
v Type: Character
v Char Set: N/A
v Length: 8 bytes

Query_Allocate_Queue

Chapter 4. APPC/MVS Allocate Queue Services 4-9

Contains a timestamp that shows when the caller last called the
Receive_Allocate service.

The time is in the format provided by the STORE CLOCK (STCK) assembler
instruction.

If the caller has not called the Receive_Allocate service for the specified
allocate queue, the system sets this parameter to binary zeroes.

Last_rec_alloc_returned
Returned parameter
v Type: Character
v Char Set: N/A
v Length: 8 bytes

Contains a timestamp that shows when the Receive_Allocate service most
recently returned control to the caller for the specified allocate queue
(regardless of whether the call successfully returned an allocate request).

The time is in the format provided by the STORE CLOCK (STCK) assembler
instruction.

If the Receive_Allocate service has not yet returned control to the caller for the
specified allocate queue, the system sets this parameter to binary zeroes.

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains additional information about the result of the call when the return_code
parameter contains a non-zero value other than decimal 64
(atbcts_appc_not_available).

Table 4-4 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the result of the call. If the return_code parameter contains zero or
decimal 64 (atbcts_appc_not_available), there is no reason code. For other
return codes, check the reason_code parameter for additional information about
the result of the call.

Table 4-4 lists the valid return and reason codes for the Query_Allocate_Queue
service.

Table 4-4. Return and Reason Codes for Query_Allocate_Queue

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

0 atbcts_ok

8 atbcts_parameter_error

17 atbcts_inval_alloc_queue_token

18 atbcts_inval_notify_type

Query_Allocate_Queue

4-10 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table 4-4. Return and Reason Codes for Query_Allocate_Queue (continued)

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

16 atbcts_request_unsuccessful

7 atbcts_parameter_inaccessible

8 atbcts_cannot_hold_locks

20 atbcts_request_cancelled

32 atbcts_service_failure

16 atbcts_appc_service_failure

64 atbcts_appc_not_available

For more detailed information about these return codes and reason codes, see
“Appendix B. Explanation of Return and Reason Codes” on page B-1.

Abend Codes for Query_Allocate_Queue
The caller might encounter abend X'EC7' with either of the reason codes shown
below:

Table 4-5. Abend Codes for Query_Allocate_Queue

Abend Code
(Hexadecimal)

Reason Code
(Hexadecimal)

Description

X'EC7' X'0014000B' The number of parameters specified
is incorrect.

X'EC7' X'0014000C' APPC/MVS cannot access one or
more of the specified parameters.

See z/OS MVS System Codes for an explanation and response for these codes.

Receive_Allocate
APPC/MVS servers use the Receive_Allocate service to retrieve the oldest allocate
request from a particular allocate queue. Note that servers use the
Receive_Allocate service, instead of the Accept_Conversation or Get_Conversation
calls, which are commonly used by scheduled transaction programs, to receive
inbound conversations.

Environment for Receive_Allocate
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Query_Allocate_Queue

Chapter 4. APPC/MVS Allocate Queue Services 4-11

Restrictions
Programs that call the Receive_Allocate service while in task mode should not have
any enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the section on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Input Register Information
Before calling the Receive_Allocate service, the caller must ensure that the
following GPRs contain the specified information:

Register Contents

1 Address of the parameter list

13 Address of a standard 18-word save area

14 Return address

15 Entry point address of the service being called.

Before calling the Receive_Allocate service, the caller must ensure that the
following access registers (ARs) contain the specified information:

Register Contents

1 0

13 - 15 0

Output Register Information
When control returns to the caller of the Receive_Allocate service, the general
purpose registers (GPRs) contain:

Register Contents

0 - 1 Used as work registers by the system

2 - 14 Unchanged

15 Used as a work register by the system

When control returns to the caller of the Receive_Allocate service, the access
registers (ARs) contain:

Register Contents

0 - 1 Used as work registers by the system

2 - 14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Syntax Format for Receive_Allocate
The figure below shows the syntax of the CALL statement for the Receive_Allocate
service. You must code all parameters on the CALL statement in the order shown.

Receive_Allocate

4-12 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Parameters for Receive_Allocate
The following section describes the parameters you specify when calling the
Receive_Allocate service.

Notify_type
Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

No notification is requested. APPC/MVS processes this call synchronously,
and returns control to the caller when processing is complete. APPC/MVS
sets all returned parameters on return to the caller. To specify no notification,
set this parameter to a four-byte structure that contains binary zeroes.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set this parameter to
an eight-byte structure that contains a fullword binary one (X'00000001'),
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the caller’s home address space.

When you specify an ECB, APPC/MVS returns control to the caller before
processing is complete, with only the return code set. If APPC/MVS accepts
the asynchronous request, it sets the return code to 0 to show that it is
processing the service asynchronously. APPC/MVS fills in the other returned
parameters during asynchronous processing, and posts the specified ECB
when it has set all the returned parameters. The completion code field in the
ECB contains the return code for the service. APPC/MVS places the reason
code, if any, in the server’s reason_code parameter.

Allocate_queue_token
Supplied parameter
v Type: Character string
v Length: 8 bytes

CALL ATBRAL2(
Notify_type,
Allocate_queue_token,
Receive_allocate_type,
Time_out_value,
Conversation_ID,
Conversation_type,
Partner_LU_name,
Mode_name,
Sync_level,
User_ID,
Profile,
Reason_code,
Return_code

);

Figure 4-3. Syntax for Receive_Allocate

Receive_Allocate

Chapter 4. APPC/MVS Allocate Queue Services 4-13

Specifies the allocate queue token that indicates the particular allocate queue
from which the allocate request is to be received. (The allocate queue token is
returned as output from a successful call to the Register_For_Allocates service.)

Receive_allocate_type
Supplied parameter
v Type: Integer
v Length: 32 bits

Specifies whether the caller is allowed to wait to receive an allocate request if
one is not immediately available (such as when the allocate queue is empty)
and, if so, for how long.

Valid values for this parameter are:

Value Meaning

1 atbcts_immediate

Control is to be returned to the caller immediately, regardless of
whether an allocate request can be received. If an allocate
request is not immediately available, APPC/MVS sets the
return_code parameter to return code 16
(atbcts_request_unsuccessful) and the reason_code parameter
to reason code 21 (atbcts_no_alloc_to_receive).

2 atbcts_wait

The call to this service does not complete until an allocate
request is received.

3 atbcts_timed

This call does not complete until an allocate request is
received, or the time specified in the timeout_value parameter
is exceeded. If no allocate request is available before the
timeout value is exceeded, APPC/MVS sets the return_code
parameter to return code 16 (atbcts_request_unsuccessful) and
the reason_code parameter to reason code 21
(atbcts_no_alloc_to_receive).

Set this parameter with the notify_type and time_out_value parameters, as
follows:

v Notify_type specifies synchronous and asynchronous processing for this call.
(For the results of specifying the receive_allocate_type parameter with the
notify_type parameter, see Table 2-3 on page 2-8.)

v When the call is to wait a specified amount of time for an inbound allocate to
become available, specify the amount of time (in seconds) on the
time_out_value parameter.

Time_out_value
Supplied parameter
v Type: Integer
v Length: 32 bits
v Range: 0 - 1,000,000

Specifies, in seconds, the maximum amount of time the caller is allowed to wait
to receive an allocate request, if one is not immediately available (because the
allocate queue is empty).

Receive_Allocate

4-14 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

The time_out_value parameter is used only when the caller sets the
receive_allocate_type parameter to atbcts_timed. Otherwise, this parameter has
no meaning and is ignored after APPC/MVS checks it to see that it contains a
valid value. Set this parameter to zero if you are not using it.

Conversation_ID
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Contains, on return to the caller, the conversation_ID of the conversation that
was received. The conversation_id, sometimes called the resource identifier,
identifies a conversation to the system. The caller uses the conversation ID to
hold subsequent APPC communications with the client transaction program.

Conversation_type
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the type of conversation that was received.

Valid values for this parameter are:

Value Meaning

0 Basic_conversation

In this conversation, the caller and its partner program are to
format their data into separate records, with record length and
data specified, before sending it.

1 Mapped_conversation

In this conversation, the caller and its partner are to rely on
APPC to format the data they send.

Partner_LU_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes, padded with blanks and left justified.

Contains the name of the LU at which the partner program is located. This
value is the combined network_ID and network LU name (two 1-8 byte Type A
character strings, concatenated by a period: network_ID.network_LU_name).
This format is known as a network-qualified LU name . When VTAM is not
active, the network_ID is not defined and only the network LU name is returned
to the caller.

If the partner LU is a member of a VTAM generic resource group, the
network-LU-name portion of the partner LU name might be a generic resource
name.

Mode_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Receive_Allocate

Chapter 4. APPC/MVS Allocate Queue Services 4-15

Contains the mode name that specifies the network properties of the session
allocated for this conversation.

Sync_level
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the synchronization level that the caller and its partner program are to
use on this conversation.

Valid values for this parameter are:

Value Meaning

0 None

The programs will not perform confirmation processing on this
conversation.

1 Confirm

The programs can perform confirmation processing on this
conversation. The programs will recognize returned parameters
relating to confirmation.

2 Syncpt

The programs can perform syncpoint processing on this
conversation. The programs may issue Commit or Backout calls
and will recognize returned parameters related to this syncpoint
processing.

User_ID
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Contains the user ID that is associated with the received conversation. If no
user ID is associated with the conversation, this parameter contains blanks.

Profile
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Contains the RACF group name associated with the conversation.

If APPC/MVS does not return a value for this parameter, and does return a
value for the user_id parameter, APPC/MVS used a default RACF profile for the
user ID. If neither a profile nor a user ID is returned, or there is no security
environment established, no security profile is associated with the conversation
and this parameter contains blanks.

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Receive_Allocate

4-16 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Contains additional information about the result of the call when the return_code
parameter contains a non-zero value other than decimal 64
(atbcts_appc_not_available).

Table 4-6 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the result of the call. If the return_code parameter contains zero or
decimal 64 (atbcts_appc_not_available), there is no reason code. For other
return codes, check the reason_code parameter for additional information about
the result of the call.

Table 4-6 lists the valid return and reason codes for the Receive_Allocate
service.

Table 4-6. Return and Reason Codes for Receive_Allocate

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

0 atbcts_ok

8 atbcts_parameter_error

17 atbcts_inval_alloc_queue_token

18 atbcts_inval_notify_type

19 atbcts_inval_timeout_value

38 atbcts_inval_receive_allc_type

16 atbcts_request_unsuccessful

7 atbcts_parameter_inaccessible

8 atbcts_cannot_hold_locks

20 atbcts_request_cancelled

21 atbcts_no_alloc_to_receive

44 atbcts_luwid_already_associated

45 atbcts_sync_point_manager_error

32 atbcts_service_failure

16 atbcts_appc_service_failure

64 atbcts_appc_not_available

For more detailed information about these return codes and reason codes, see
“Appendix B. Explanation of Return and Reason Codes” on page B-1.

Abend Codes for Receive_Allocate
The caller might encounter abend X'EC7' with either of the reason codes shown
below:

Receive_Allocate

Chapter 4. APPC/MVS Allocate Queue Services 4-17

Table 4-7. Abend Codes for Receive_Allocate

Abend Code
(Hexadecimal)

Reason Code
(Hexadecimal)

Description

X'EC7' X'00140003' The number of parameters specified
is incorrect.

X'EC7' X'00140004' APPC/MVS cannot access one or
more of the specified parameters.

See z/OS MVS System Codes for an explanation and response for these codes.

Register_for_Allocates
An application program calls the Register_For_Allocates service to indicate which
inbound allocate requests are to be directed to it, rather than scheduled by an
APPC/MVS transaction scheduler. The program is considered to be an APPC/MVS
server on the successful completion of the Register_For_Allocates service.

Environment for Register_For_Allocates
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Restrictions
Programs that call the Register_For_Allocates service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Input Register Information
Before calling the Register_For_Allocates service, the caller must ensure that the
following GPRs contain the specified information:

Register Contents
1 Address of the parameter list
13 Address of a standard 18-word save area
14 Return address
15 Entry point address of the service being called.

Before calling the Register_For_Allocates service, the caller must ensure that the
following access registers (ARs) contain the specified information:

Register Contents
1 0
13 - 15 0

Receive_Allocate

4-18 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Output Register Information
When control returns to the caller of the Register_For_Allocates service, the general
purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

When control returns to the caller of the Register_For_Allocates service, the access
registers (ARs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Syntax Format for Register_For_Allocates
The figure below shows the syntax of the CALL statement for the
Register_For_Allocates service. You must code all parameters on the CALL
statement in the order shown.

Parameters for Register_For_Allocates
The following section describes the parameters you specify when calling the
Register_For_Allocates service.

Notify_type
Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

CALL ATBRFA2(
Notify_type,
Sym_dest_name,
TP_name_length,
TP_name,
Local_LU_name,
Partner_LU_name,
User_ID,
Profile,
Allocate_Queue_Token,
Reason_code,
Return_code

);

Figure 4-4. Syntax for Register_For_Allocates

Register_for_Allocates

Chapter 4. APPC/MVS Allocate Queue Services 4-19

No notification is requested. APPC/MVS processes this call synchronously,
and returns control to the caller when processing is complete. APPC/MVS
sets all returned parameters on return to the caller. To specify no notification,
set this parameter to a four-byte structure that contains binary zeroes.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set this parameter to
an eight-byte structure that contains a fullword binary one (X'00000001'),
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the caller’s home address space.

When you specify an ECB, APPC/MVS returns control to the caller before
processing is complete, with only the return code set. If APPC/MVS accepts
the asynchronous request, it sets the return code to 0 to show that it is
processing the service asynchronously. APPC/MVS fills in the other returned
parameters during asynchronous processing, and posts the specified ECB
when it has set all the returned parameters. The completion code field in the
ECB contains the return code for the service. APPC/MVS places the reason
code, if any, in the server’s reason_code parameter.

Sym_dest_name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes (left justified, padded with blanks)

Specifies a symbolic destination name that represents the transaction program
and local LU for which you are registering. This parameter, if used, must
contain a value that matches a symbolic destination name defined in the active
side information data set. APPC/MVS obtains the TP name and local LU name
from the side information data set (the mode name, which is also contained in
the side information, is ignored).

To omit a symbolic destination name, set the sym_dest_name parameter value
to 8 blanks and specify values for the local_LU_name, TP_name, and
TP_name_length parameters.

If you specify a symbolic destination name, APPC/MVS obtains the local LU
name from the PARTNER_LU keyword value in the symbolic destination entry.
If the LU name specified in the symbolic destination entry is network-qualified
(includes both the network ID and network LU name), APPC/MVS uses only the
network-LU-name portion for the local LU name. If the keyword value is a
VTAM generic resource name, this service fails with return code 16
(atbcts_request_unsuccessful) and reason code 12 (atbcts_inval_local_lu). If
both the local_LU_name parameter and the LU name in the symbolic
destination entry is blank, this service fails with return code 8
(atbcts_parameter_error), and reason code 5 (atbcts_local_lu_not_specified).

If the local LU name is obtained from the side information data set and the LU
name is a network-qualified LU name, APPC/MVS ensures that the netid in the
symbolic destination name is the local netid. If not, the Register_For_Allocates
service returns return code 4 (atbcts_warning) and reason code 28
(atbcts_netid_does_not_match). If VTAM is not active and therefore APPC/MVS
cannot determine whether the netid is valid, the Register_For_Allocates service
returns return code 4 (atbcts_warning) and reason code 39
(atbcts_cannot_determine_netid). Both of these codes are warnings only;
APPC/MVS continues to process the call to the Register_For_Allocates service.

Register_for_Allocates

4-20 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

If you also specify values for the local_LU_name or the
TP_name/TP_name_length parameters, these values override any obtained
from the side information data set.

If you specify a symbolic destination name that does not match an entry in the
side information data set, the Register_For_Allocates service returns control
with return code 16 (atbcts_request_unsuccessful) and reason code 11
(atbcts_sym_dest_name_unknown).

TP_name_length
Supplied parameter
v Type: Integer
v Length: 32 bits
v Range: 0-64

Specifies the length of data contained in the TP_name parameter.

If you specify a symbolic destination name in the sym_dest_name parameter,
set TP_name_length to 0 to use the TP name from the side information data
set.

TP_name
Supplied parameter
v Type: Character string
v Char Set: 00640 or Type A (Type A if the TP is protected by RACF)
v Length: 1 - 64 bytes

Specifies the name of transaction program that was targeted by the client TP’s
allocate request. This name must match the name that the client TP specified in
the TP_name parameter of the Allocate service.

If you specify a symbolic destination name in the sym_dest_name parameter,
set TP_name to 0 to use the TP name from the side information data set.

You can specify a SNA service transaction program name in this parameter.

If the TP is to be protected by a RACF security profile in the APPCTP class or
the APPCSERV class, the TP name must consist of Type A characters only.
See “Appendix A. Character Sets” on page A-1 for a list of Type A characters.

Local_LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes (left justified, padded on right with blanks)

Specifies the name of the LU at which the transaction program specified in the
TP_name parameter resides. The local LU name must match the name of the
LU that the client TP specified on its allocate call (in the partner_LU_name
parameter).

If you specify a symbolic destination name in the sym_dest_name parameter,
set local_LU_name to 8 blanks to use the value for the PARTNER_LU keyword
in the side information entry. The keyword value cannot be a VTAM generic
resource name, or this service fails.

Partner_LU_name
Supplied parameter

Register_for_Allocates

Chapter 4. APPC/MVS Allocate Queue Services 4-21

v Type: Character string
v Char Set: Type A
v Length: 17 bytes (left justified, padded on right with blanks)

Specifies the name of the LU from which the client TP’s allocate request
originated. The client TP might have specified this LU on its allocate request, or
have used the default local LU (by setting the local_LU_name parameter of the
Allocate service to blanks). The local LU transforms this locally known LU name
to an LU name used by the network. (For more information about the
local_LU_name parameter of the Allocate service, see z/OS MVS Programming:
Writing Transaction Programs for APPC/MVS.)

The partner_LU_name parameter can contain one of the following values:

v LU name only (1-8 byte Type A character string).

This string represents the network LU name, which, if unique within the
network and interconnected networks, is sufficient for most TP
communications.

Inbound allocate requests from any LU with the network LU name specified
on the call to the Register_For_Allocates service can be placed on this
allocate queue. APPC/MVS, however, will first check to see if there are any
allocate queues with a matching network-qualified partner LU name.

v A VTAM generic resource name.

If the partner LU is a member of a generic resource group, you may specify
the 1- to 8-byte generic resource name of the group.

v Combined network ID and network LU name (two 1-8 byte Type A character
strings, concatenated by a period: network_ID.network_LU_name). This
format is known as a network-qualified LU name ; each LU in the network
and all interconnected networks can be uniquely identified by its
network-qualified LU name.

The network-LU-name portion of a network-qualified name may be a VTAM
generic resource name.

If the network-qualified LU name is specified, both the network ID and the
network LU name on the inbound allocate request will have to match the
value specified on the Register_For_Allocates call to be placed on the
allocate queue. If VTAM is inactive, APPC/MVS is unable to determine the
network ID, therefore no inbound allocate requests will be placed on an
allocate queue that has a network-qualified partner LU name. When an
inbound allocate request enters the system, APPC/MVS first checks for a
match with the network-qualified LU name and then just the network LU
name.

v Blank:

A blank value for the partner_LU_name parameter indicates that allocate
requests from any partner LU are to be accepted.

Table 4-8 on page 4-23 shows whether the partner LU name specified on a call
to Register_For_Allocates will successfully match the LU associated with the
inbound request:

Register_for_Allocates

4-22 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table 4-8. How APPC/MVS Handles Partner LU Name Specifications

Register_For_Allocates
specifies...

LU of the inbound request...

netid.LUNAME net2.LUNAME LUNAME

LUNAME Match Match Match

netid.LUNAME Match No Match No Match

net2.LUNAME No Match Match No Match

User_ID
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes (left justified, padded on right with blanks)

Specifies the user ID associated with the inbound allocate requests to be
served.

A blank value for the user_ID parameter indicates that allocate requests from
any user ID are to be accepted.

Note that APPC/MVS does not ensure that the specified user ID is a member of
the security profile specified in the profile parameter. The server must perform
this check itself, if needed.

Profile
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes (left justified, padded on right with blanks)

Specifies the security profile associated with the inbound allocate requests to be
served. APPC/MVS treats the profile name as a RACF group name.

A blank value for the profile parameter indicates that allocate requests from any
security profile are to be accepted.

APPC/MVS compares this profile with the profile that flows in with the allocate
request, or with the user ID’s default profile, if no profile flows in with the
allocate request.

Allocate_queue_token
Returned parameter
v Type: Character string
v Length: 8 bytes

Returns the allocate queue token, which uniquely identifies an allocate queue.
Use the allocate queue token on later calls to APPC/MVS allocate queue
services to indicate the particular allocate queue on which a requested function
is to be performed.

This field contains a valid token only when the return code from this service is
either 0 or 4 (atbcts_warning).

Reason_code
Returned parameter
v Type: Integer

Register_for_Allocates

Chapter 4. APPC/MVS Allocate Queue Services 4-23

v Length: 32 bits

Contains additional information about the result of the call when the return_code
parameter contains a non-zero value other than decimal 64
(atbcts_appc_not_available).

Table 4-9 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the result of the call. If the return_code parameter contains zero or
decimal 64 (atbcts_appc_not_available), there is no reason code. For other
return codes, check the reason_code parameter for additional information about
the result of the call.

Table 4-9 lists the valid return and reason codes for the Register_For_Allocates
service.

Table 4-9. Return and Reason Codes for Register_For_Allocates

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

0 atbcts_ok

4 atbcts_warning

1 atbcts_already_registered

28 atbcts_netid_does_not_match

39 atbcts_cannot_determine_netid

8 atbcts_parameter_error

2 atbcts_tp_name_not_specified

3 atbcts_inval_tp_name

4 atbcts_inval_tp_name_length

5 atbcts_local_lu_not_specified

18 atbcts_inval_notify_type

43 atbcts_inval_partner_lu

16 atbcts_request_unsuccessful

7 atbcts_parameter_inaccessible

8 atbcts_cannot_hold_locks

10 atbcts_sched_cant_register

11 atbcts_sym_dest_name_unknown

12 atbcts_inval_local_lu

13 atbcts_lu_not_receiving

14 atbcts_not_auth_to_serve_tp

15 atbcts_not_auth_to_local_lu

20 atbcts_request_cancelled

32 atbcts_service_failure

16 atbcts_appc_service_failure

Register_for_Allocates

4-24 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table 4-9. Return and Reason Codes for Register_For_Allocates (continued)

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

64 atbcts_appc_not_available

For more detailed information about these return and reason codes, see
“Appendix B. Explanation of Return and Reason Codes” on page B-1.

Abend Codes for Register_For_Allocates
The caller might encounter abend X'EC7' with either of the reason codes shown
below:

Table 4-10. Abend Codes for Register_For_Allocates

Abend Code
(Hexadecimal)

Reason Code
(Hexadecimal)

Meaning

X'EC7' X'00140001' The number of parameters specified
is incorrect.

X'EC7' X'00140002' APPC/MVS cannot access one or
more of the specified parameters.

See z/OS MVS System Codes for an explanation and response for these codes.

Set_Allocate_Queue_Attributes
APPC/MVS servers use the Set_Allocate_Queue_Attributes service to specify
whether APPC/MVS is to preserve an allocate queue during periods of time when
no servers are registered for the queue. This service allows the caller to stop
serving an allocate queue for some interval of time, and then resume serving the
queue without interrupting the flow of inbound allocate requests.

Environment for Set_Allocate_Queue_Attributes
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Restrictions
Programs that call the Set_Allocate_Queue_Attributes service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Register_for_Allocates

Chapter 4. APPC/MVS Allocate Queue Services 4-25

Input Register Information
Before calling the Set_Allocate_Queue_Attributes service, the caller must ensure
that the following GPRs contain the specified information:

Register Contents
1 Address of the parameter list
13 Address of a standard 18-word save area
14 Return address
15 Entry point address of the service being called.

Before calling the Set_Allocate_Queue_Attributes service, the caller must ensure
that the following access registers (ARs) contain the specified information:

Register Contents
1 0
13 - 15 0

Output Register Information
When control returns to the caller of the Set_Allocate_Queue_Attributes service, the
general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

When control returns to the caller of the Set_Allocate_Queue_Attributes service, the
access registers (ARs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Syntax Format for Set_Allocate_Queue_Attributes
The figure below shows the syntax of the CALL statement for the
Set_Allocate_Queue_Attributes service. You must code all parameters on the CALL
statement in the order shown.

CALL ATBSAQ2(
Notify_type,
Allocate_queue_token,
Allocate_queue_keep_time,
Reason_code,
Return_code

);

Figure 4-5. Syntax for Set_Allocate_Queue_Attributes

Set_Allocate_Queue_Attributes

4-26 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Parameters for Set_Allocate_Queue_Attributes
The following section describes the parameters you specify when calling the
Set_Allocate_Queue_Attributes service.

Notify_type
Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

No notification is requested. APPC/MVS processes this call synchronously,
and returns control to the caller when processing is complete. APPC/MVS
sets all returned parameters on return to the caller. To specify no notification,
set this parameter to a four-byte structure that contains binary zeroes.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set this parameter to
an eight-byte structure that contains a fullword binary one (X'00000001'),
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the caller’s home address space.

When you specify an ECB, APPC/MVS returns control to the caller before
processing is complete, with only the return code set. If APPC/MVS accepts
the asynchronous request, it sets the return code to 0 to show that it is
processing the service asynchronously. APPC/MVS fills in the other returned
parameters during asynchronous processing, and posts the specified ECB
when it has set all the returned parameters. The completion code field in the
ECB contains the return code for the service. APPC/MVS places the reason
code, if any, in the server’s reason_code parameter.

Allocate_queue_token
Supplied parameter
v Type: Character string
v Length: 8 bytes

Specifies the allocate queue token that indicates the particular allocate queue
for which the caller wants to set attributes. (The allocate queue token is
returned as output from a successful call to the Register_For_Allocates service.)

Allocate_queue_keep_time
Supplied parameter
v Type: Integer
v Length: 32 bits
v Range: 0 - 3600

Specifies, in seconds, the amount of time APPC/MVS is to maintain the
specified allocate queue during periods when no servers are registered for the
queue. This time takes effect when the last server of the allocate queue calls
the Unregister_For_Allocates service to stop serving the queue. If no server
registers for the allocate queue before this time limit is exceeded, APPC/MVS
rejects any allocate requests that reside on the allocate queue.

To have no keep time in effect for the allocate queue, set this parameter to zero
(or do not call this service).

Set_Allocate_Queue_Attributes

Chapter 4. APPC/MVS Allocate Queue Services 4-27

If you specify an allocate queue keep time that is outside the accepted range (0
to 3600 seconds), the Set_Allocate_Queue_Attributes service returns control
with the reason_code parameter set to 8 (atbcts_parameter_error) and the
reason_code parameter set to 34 (atbcts_inval_queue_keep_time).

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains additional information about the result of the call when the return_code
parameter contains a non-zero value other than decimal 64
(atbcts_appc_not_available).

Table 4-11 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the result of the call. If the return_code parameter contains zero or
decimal 64 (atbcts_appc_not_available), there is no reason code. For other
return codes, check the reason_code parameter for additional information about
the result of the call.

Table 4-11 lists the valid return and reason codes for the
Set_Allocate_Queue_Attributes service.

Table 4-11. Return and Reason Codes for Set_Allocate_Queue_Attributes

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

0 atbcts_ok

8 atbcts_parameter_error

17 atbcts_inval_alloc_queue_token

18 atbcts_inval_notify_type

34 atbcts_inval_queue_keep_time

16 atbcts_request_unsuccessful

8 atbcts_cannot_hold_locks

20 atbcts_request_cancelled

32 atbcts_service_failure

16 atbcts_appc_service_failure

64 atbcts_appc_not_available

For more detailed information about these return codes and reason codes, see
“Appendix B. Explanation of Return and Reason Codes” on page B-1.

Abend Codes for Set_Allocate_Queue_Attributes
The caller might encounter abend X'EC7' with either of the reason codes shown
below:

Set_Allocate_Queue_Attributes

4-28 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table 4-12. Abend Codes for Set_Allocate_Queue_Attributes

Abend Code
(Hexadecimal)

Reason Code
(Hexadecimal)

Description

X'EC7' X'0014000D' The number of parameters specified
is incorrect.

X'EC7' X'0014000E' APPC/MVS cannot access one or
more of the specified parameters.

See z/OS MVS System Codes for an explanation and response for these codes.

Set_Allocate_Queue_Notification
APPC/MVS servers use the Set_Allocate_Queue_Notification service to request to
be notified when an allocate queue reaches a specified maximum or minimum
number of inbound allocate requests (or to cancel a previous request for such
notification).

Environment for Set_Allocate_Queue_Notification
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Restrictions
Programs that call the Set_Allocate_Queue_Notification service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Input Register Information
Before calling the Set_Allocate_Queue_Notification service, the caller must ensure
that the following GPRs contain the specified information:

Register Contents
1 Address of the parameter list
13 Address of a standard 18-word save area
14 Return address
15 Entry point address of the service being called.

Before calling the Set_Allocate_Queue_Notification service, the caller must ensure
that the following access registers (ARs) contain the specified information:

Register Contents
1 0
13 - 15 0

Set_Allocate_Queue_Attributes

Chapter 4. APPC/MVS Allocate Queue Services 4-29

Output Register Information
When control returns to the caller of the Set_Allocate_Queue_Notification service,
the general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

When control returns to the caller of the Set_Allocate_Queue_Notification service,
the access registers (ARs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Syntax Format for Set_Allocate_Queue_Notification
The figure below shows the syntax of the CALL statement for the
Set_Allocate_Queue_Notification service. You must code all parameters on the
CALL statement in the order shown.

Parameters for Set_Allocate_Queue_Notification
The following section describes the parameters you specify when calling the
Set_Allocate_Queue_Notification service.

Notify_type
Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

No notification is requested. APPC/MVS processes this call synchronously,
and returns control to the caller when processing is complete. APPC/MVS
sets all returned parameters on return to the caller. To specify no notification,
set this parameter to a four-byte structure that contains binary zeroes.

CALL ATBSAN2(
Notify_type,
Allocate_queue_token,
Event_notification_type,
Event_code,
Event_qualifier,
Reason_code,
Return_code

);

Figure 4-6. Syntax for Set_Allocate_Queue_Notification

Set_Allocate_Queue_Notification

4-30 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set this parameter to
an eight-byte structure that contains a fullword binary one (X'00000001'),
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the caller’s home address space.

When you specify an ECB, APPC/MVS returns control to the caller before
processing is complete, with only the return code set. If APPC/MVS accepts
the asynchronous request, it sets the return code to 0 to show that it is
processing the service asynchronously. APPC/MVS fills in the other returned
parameters during asynchronous processing, and posts the specified ECB
when it has set all the returned parameters. The completion code field in the
ECB contains the return code for the service. APPC/MVS places the reason
code, if any, in the server’s reason_code parameter.

Allocate_queue_token
Supplied parameter
v Type: Character string
v Length: 8 bytes

Specifies the allocate queue token that indicates the particular allocate queue
for which you are requesting notification, or cancelling a previous notification
request. (The allocate queue token is returned as output from a successful call
to the Register_For_Allocates service.)

Event_notification_type
Supplied parameter
v Type: Integer
v Length: 32 bits

Specifies one-time or continuous notification, or cancels notification that the
server requested previously through one or more calls to this service.

Valid values for this parameter are:

Value Meaning

1 atbcts_set_one_time_notify

Request one-time notification for the event. APPC/MVS notifies
the server after the first occurrence of the event and stops
monitoring for the event. The server can restore this notification
request if necessary by calling the
Set_Allocate_Queue_Notification service again with the same
parameter values.

2 atbcts_set_continuous_notify

Request continuous notification for an event. APPC/MVS
notifies the server every time the event occurs until the server
cancels this request or the APPC/MVS address space ends.

3 atbcts_cancel_notify

Cancel a particular notification request (specified in this call by
the combination of the event_code and event_notification_type
parameters). APPC/MVS also deletes from the server’s event
queue any unreceived event elements that were queued
because of the request to be cancelled. If this is the last active
notification request for the server and the server has an

Set_Allocate_Queue_Notification

Chapter 4. APPC/MVS Allocate Queue Services 4-31

outstanding call to the Get_Event service, APPC/MVS cancels
the Get_Event service. The server receives, as output from the
Get_Event service, a return code of 16
(atbcts_request_unsuccessful) and a reason code of 31
(atbcts_event_notify_cancelled).

4 atbcts_cancel_all_notify

Cancel all active event notification requests from the server for
a particular allocate queue (specified by the
allocate_queue_token parameter). APPC/MVS also deletes any
unreceived event elements related to the allocate queue from
the server’s event queue. If this is the server’s last active
notification request, and the server has an outstanding call to
the Get_Event service, APPC/MVS cancels the call to the
Get_Event service. The server receives, as output from the
Get_Event service, a return code of 16
(atbcts_request_unsuccessful) and a reason code of 31
(atbcts_event_notify_cancelled).

Event_code
Supplied parameter
v Type: Integer
v Length: 32 bits

Specifies the type of threshold (minimum or maximum) for which the server is to
be notified, or the notification request to be cancelled. When the
event_notification_type parameter is set to 1 or 2, this is the type of threshold
for which the server is requesting notification. When the event_notification_type
parameter is set to 3 or 4, this is the type of threshold for which the server is
cancelling notification.

Valid values for this parameter are:

Value Meaning

1 atbcts_allocate_queue_min

Specifies a minimum threshold. For a notification request (event
notification type 1 or 2), APPC/MVS is to notify the server when
the allocate queue (specified by the allocate_queue_token
parameter) decreases to the number of allocate requests
specified by the event_qualifier parameter.

For a cancel notification request (event notification type 3 or 4),
APPC/MVS is to cancel notification for this minimum threshold.

2 atbcts_allocate_queue_max

Specifies a maximum threshold. For a notification request
(event notification type 1 or 2), APPC/MVS is to notify the
server when the allocate queue (specified by the
allocate_queue_token parameter) increases to the number of
allocate requests specified by the event_qualifier parameter.

For a cancel notification request (event notification type 3 or 4),
APPC/MVS is to cancel notification for this maximum threshold.

Event_qualifier
Supplied parameter
v Type: Integer

Set_Allocate_Queue_Notification

4-32 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

v Length: 32 bits

Specifies the number (in decimal) of allocate requests for the minimum or
maximum threshold. The range of possible values for this parameter depends
on whether the threshold is a minimum or maximum (specified through the
event_code parameter). The threshold ranges are as follows:

v For a minimum threshold, this parameter may be set to a value from 0 to
((2**32)-2)

v For a maximum threshold, this parameter may be set to a value from 1 to
((2**32)-1).

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains additional information about the result of the call when the return_code
parameter contains a non-zero value other than decimal 64
(atbcts_appc_not_available).

Table 4-13 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the result of the call. If the return_code parameter contains zero or
decimal 64 (atbcts_appc_not_available), there is no reason code. For other
return codes, check the reason_code parameter for additional information about
the result of the call.

Table 4-13 lists the valid return and reason codes for the
Set_Allocate_Queue_Notification service.

Table 4-13. Return and Reason Codes for Set_Allocate_Queue_Notification

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

0 atbcts_ok

8 atbcts_parameter_error

17 atbcts_inval_alloc_queue_token

18 atbcts_inval_notify_type

26 atbcts_inval_event_notif_type

27 atbcts_inval_event_code

29 atbcts_inval_event_code_qual

16 atbcts_request_unsuccessful

8 atbcts_cannot_hold_locks

20 atbcts_request_cancelled

32 atbcts_service_failure

16 atbcts_appc_service_failure

64 atbcts_appc_not_available

Set_Allocate_Queue_Notification

Chapter 4. APPC/MVS Allocate Queue Services 4-33

For more detailed information about these return codes and reason codes, see
“Appendix B. Explanation of Return and Reason Codes” on page B-1.

Abend Codes for Set_Allocate_Queue_Notification
The caller might encounter abend X'EC7' with either of the reason codes shown
below:

Table 4-14. Abend Codes for Set_Allocate_Queue_Notification

Abend Code
(Hexadecimal)

Reason Code
(Hexadecimal)

Description

X'EC7' X'00140007' The number of parameters specified
is incorrect.

X'EC7' X'00140008' APPC/MVS cannot access one or
more of the specified parameters.

See z/OS MVS System Codes for an explanation and response for these codes.

Unregister_For_Allocates
The Unregister_For_Allocates service is used by a server to specify that it will no
longer serve specific inbound transaction program requests. The service indicates
that the server is no longer registered for an allocate queue and therefore the
allocate queue token is no longer valid for the server.

Environment for Unregister_For_Allocates
The requirements for the caller are:

Minimum authorization: Problem state, with any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Restrictions
Programs that call the Unregister_For_Allocates service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Input Register Information
Before calling the Unregister_For_Allocates service, the caller must ensure that the
following GPRs contain the specified information:

Register Contents
1 Address of the parameter list
13 Address of a standard 18-word save area
14 Return address
15 Entry point address of the service being called.

Set_Allocate_Queue_Notification

4-34 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Before calling the Unregister_For_Allocates service, the caller must ensure that the
following access registers (ARs) contain the specified information:

Register Contents
1 0
13 - 15 0

Output Register Information
When control returns to the caller of the Unregister_For_Allocates service, the
general purpose registers (GPRs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

When control returns to the caller of the Unregister_For_Allocates service, the
access registers (ARs) contain:

Register Contents
0 - 1 Used as work registers by the system
2 - 14 Unchanged
15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Syntax Format for Unregister_For_Allocates
The figure below shows the syntax of the CALL statement for the
Unregister_For_Allocates service. You must code all parameters on the CALL
statement in the order shown.

Parameters for Unregister_For_Allocates
The following section describes the parameters you specify when calling the
Unregister_For_Allocates service.

Notify_type
Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

CALL ATBURA2(
Notify_type,
Allocate_queue_token,
Reason_code,
Return_code

);

Figure 4-7. Syntax for Unregister_For_Allocates

Unregister_For_Allocates

Chapter 4. APPC/MVS Allocate Queue Services 4-35

No notification is requested. APPC/MVS processes this call synchronously,
and returns control to the caller when processing is complete. APPC/MVS
sets all returned parameters on return to the caller. To specify no notification,
set this parameter to a four-byte structure that contains binary zeroes.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set this parameter to
an eight-byte structure that contains a fullword binary one (X'00000001'),
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the caller’s home address space.

When you specify an ECB, APPC/MVS returns control to the caller before
processing is complete, with only the return code set. If APPC/MVS accepts
the asynchronous request, it sets the return code to 0 to show that it is
processing the service asynchronously. APPC/MVS fills in the other returned
parameters during asynchronous processing, and posts the specified ECB
when it has set all the returned parameters. The completion code field in the
ECB contains the return code for the service. APPC/MVS places the reason
code, if any, in the server’s reason_code parameter.

Allocate_queue_token
Supplied parameter
v Type: Character string
v Length: 8 bytes

Specifies the allocate queue token that indicates the particular allocate queue
that the caller is to stop serving. (The allocate queue token is returned as
output from a successful call to the Register_For_Allocates service.)

To unregister the caller for all allocate queues for which it is registered, set this
parameter to binary zeroes.

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains additional information about the result of the call when the return_code
parameter contains a non-zero value other than decimal 64
(atbcts_appc_not_available).

Table 4-15 on page 4-37 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Contains the result of the call. If the return_code parameter contains zero or
decimal 64 (atbcts_appc_not_available), there is no reason code. For other
return codes, check the reason_code parameter for additional information about
the result of the call.

Table 4-15 on page 4-37 lists the valid return and reason codes for the
Unregister_For_Allocates service.

Unregister_For_Allocates

4-36 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table 4-15. Return and Reason Codes for Unregister_For_Allocates

Return Code
(Decimal)

Reason Code
(Decimal)

Symbolic Value

0 atbcts_ok

4 atbcts_warning

36 atbcts_unreg_all_no_registers

8 atbcts_parameter_error

17 atbcts_inval_alloc_queue_token

18 atbcts_inval_notify_type

16 atbcts_request_unsuccessful

8 atbcts_cannot_hold_locks

20 atbcts_request_cancelled

32 atbcts_service_failure

16 atbcts_appc_service_failure

64 atbcts_appc_not_available

For more detailed information about these return codes and reason codes, see
“Appendix B. Explanation of Return and Reason Codes” on page B-1.

Abend Codes for Unregister_For_Allocates
The caller might encounter abend X'EC7' with either of the reason codes shown
below:

Table 4-16. Abend Codes for Unregister_For_Allocates

Abend Code
(Hexadecimal)

Reason Code
(Hexadecimal)

Description

X'EC7' X'00140011' The number of parameters specified
is incorrect.

X'EC7' X'00140012' APPC/MVS cannot access one or
more of the specified parameters.

See z/OS MVS System Codes for an explanation and response for these codes.

Unregister_For_Allocates

Chapter 4. APPC/MVS Allocate Queue Services 4-37

4-38 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Appendix A. Character Sets

APPC/MVS makes use of character strings composed of characters from one of the
following character sets:

v Character set 01134, which is composed of the uppercase letters A through Z
and numerals 0-9.

v Character set Type A, which is composed of the uppercase letters A through Z,
numerals 0-9, national characters (@, $, #), and must begin with either an
alphabetic or a national character.

v Character set 00640, which is composed of the uppercase and lowercase letters
A through Z, numerals 0-9, and 19 special characters. Note that APPC/MVS does
not allow blanks in 00640 character strings.

These character sets, along with hexadecimal and graphic representations, are
provided in the following table:

Table A-1. Character Sets 01134, Type A, and 00640
Hex
Code

Graphic Description Character Set
01134 Type A 00640

40 Blank
4B . Period X
4C < Less than sign X
4D (Left parenthesis X
4E + Plus sign X
50 & Ampersand X
5B $ Dollar sign X (Note 1)
5C * Asterisk X (Note 2)
5D) Right parenthesis X
5E ; Semicolon X
60 – Dash X
61 / Slash X
6B , Comma X (Note 3)
6C % Percent sign X
6D _ Underscore X
6E > Greater than sign X
6F ? Question mark X
7A : Colon X
7B # Pound sign X (Note 1)
7C @ At sign X (Note 1)
7D ' Single quote X
7E = Equals sign X
7F " Double quote X
81 a Lowercase a X
82 b Lowercase b X
83 c Lowercase c X
84 d Lowercase d X
85 e Lowercase e X
86 f Lowercase f X
87 g Lowercase g X
88 h Lowercase h X
89 i Lowercase i X
91 j Lowercase j X
92 k Lowercase k X
93 l Lowercase l X

© Copyright IBM Corp. 1993, 2001 A-1

Table A-1. Character Sets 01134, Type A, and 00640 (continued)
Hex
Code

Graphic Description Character Set
01134 Type A 00640

94 m Lowercase m X
95 n Lowercase n X
96 o Lowercase o X
97 p Lowercase p X
98 q Lowercase q X
99 r Lowercase r X
A2 s Lowercase s X
A3 t Lowercase t X
A4 u Lowercase u X
A5 v Lowercase v X
A6 w Lowercase w X
A7 x Lowercase x X
A8 y Lowercase y X
A9 z Lowercase z X
C1 A Uppercase A X X X
C2 B Uppercase B X X X
C3 C Uppercase C X X X
C4 D Uppercase D X X X
C5 E Uppercase E X X X
C6 F Uppercase F X X X
C7 G Uppercase G X X X
C8 H Uppercase H X X X
C9 I Uppercase I X X X
D1 J Uppercase J X X X
D2 K Uppercase K X X X
D3 L Uppercase L X X X
D4 M Uppercase M X X X
D5 N Uppercase N X X X
D6 O Uppercase O X X X
D7 P Uppercase P X X X
D8 Q Uppercase Q X X X
D9 R Uppercase R X X X
E2 S Uppercase S X X X
E3 T Uppercase T X X X
E4 U Uppercase U X X X
E5 V Uppercase V X X X
E6 W Uppercase W X X X
E7 X Uppercase X X X X
E8 Y Uppercase Y X X X
E9 Z Uppercase Z X X X
F0 0 Zero X X X
F1 1 One X X X
F2 2 Two X X X
F3 3 Three X X X
F4 4 Four X X X
F5 5 Five X X X
F6 6 Six X X X
F7 7 Seven X X X
F8 8 Eight X X X
F9 9 Nine X X X

Character Sets

A-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Notes:

1. Avoid these characters because they display differently depending on the
national language code page in use.

2. Avoid using the asterisk in TP names because it causes a subset list request
when entered on panels of the APPC administration dialog and in DISPLAY
APPC commands.

3. Avoid using the comma in TP names because it acts as a parameter delimiter
when entered in DISPLAY APPC commands.

Character Sets

Appendix A. Character Sets A-3

Character Sets

A-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Appendix B. Explanation of Return and Reason Codes

Refer to the following sections for diagnostic information related to the APPC/MVS
allocate queue services:

v “Return Codes”

v “Reason Codes” on page B-2

v “Symptom Records for APPC Service Failures” on page B-5

Return Codes
The following table lists the possible return codes, their symbolic equates, and their
meanings, for the APPC/MVS allocate queue services.

Table B-1. Return Codes and Their Meanings

Return
Code
(Decimal)

Symbolic Meaning

0 atbcts_ok The service completed as requested.

4 atbcts_warning The service completed but possibly
not as expected. See the
reason_code parameter for a
description of the warning condition.

8 atbcts_parameter_error A user-supplied parameter was found
to be in error. For example, a
parameter contains characters not in
the required character set. See the
reason_code parameter to determine
which parameter is in error.

16 atbcts_request_unsuccessful The service was unsuccessful. The
cause is most likely a parameter error
other than a syntax error, or an
environmental error. For example, a
syntactically valid LU name was
specified, but the LU is not defined to
APPC/MVS. An example of an
environmental error is that the caller
called the service while holding locks.
See the reason_code parameter for
the specific cause of the error, and to
determine whether the error can be
corrected and the service re-issued.

32 atbcts_service_failure APPC/MVS service failure. Record
the return and reason code, and give
them to your systems programmer,
who should contact the appropriate
IBM support personnel.

64 atbcts_appc_not_available APPC/MVS is not currently active.
Call the service again after APPC is
available.

© Copyright IBM Corp. 1993, 2001 B-1

Reason Codes
The following table lists the possible reason codes for the APPC/MVS allocate
queue services. Because all reason code values are unique, a reason code alone is
sufficient to identify an error condition.

Table B-2. Reason Codes and Their Meanings

Reason
Code
(Decimal)

Symbolic Meaning

1 atbcts_already_registered The address space issued a
Register_For_Allocates call that
duplicated a previous
Register_For_Allocates call (that is,
the values specified for TP name,
local LU name, partner LU name,
user ID, and profile all matched those
specified on a previous call to the
Register_For_Allocates service).

2 atbcts_tp_name_not_specified A TP name is required, but none was
specified.

3 atbcts_inval_tp_name The specified TP name contains
characters that are not valid.

4 atbcts_inval_tp_name_length The specified TP name length is
outside the allowable range.

5 atbcts_local_lu_not_specified A local LU name is required, but none
was specified.

7 atbcts_parameter_inaccessible An asynchronous call failed because
a specified parameter was found to
be inaccessible.

8 atbcts_cannot_hold_locks The caller held one or more locks
when calling the service.

10 atbcts_sched_cant_register A transaction scheduler called the
Register_For_Allocates service, which
is not allowed.

11 atbcts_sym_dest_name_unknown The specified symbolic destination
name could not be found in the side
information data set.

12 atbcts_inval_local_lu Either the specified local LU is
undefined, or the VTAM generic
resource name for the local LU was
specified on the
Register_For_Allocates call or in a
side information entry.

13 atbcts_lu_not_receiving The specified local LU is not receiving
inbound allocate requests.

14 atbcts_not_auth_to_serve_tp The Register_For_Allocates service
was called, but the caller is not
authorized to serve the specified TP
name on the specified local LU.

Return and Reason Codes

B-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table B-2. Reason Codes and Their Meanings (continued)

Reason
Code
(Decimal)

Symbolic Meaning

15 atbcts_not_auth_to_local_lu The specified local LU is inaccessible
to the caller. For a discussion of
which LUs a server can use, refer to
“For Which Local LUs Can a Server
Register?” on page 2-5.

16 atbcts_appc_service_failure The service failed because of an
APPC failure.

APPC provides symptom records for
this type of error. For more
information, see “Symptom Records
for APPC Service Failures” on
page B-5.

17 atbcts_inval_alloc_queue_token The specified allocate queue token
does not represent an allocate queue
for which this address space is
registered.

18 atbcts_inval_notify_type The specified notify type is not valid.

19 atbcts_inval_timeout_value The specified timeout value is not
valid.

20 atbcts_request_cancelled The request was cancelled while in
progress. This could have been
caused by a call to the
Unregister_For_Allocates service, or
the termination of the caller’s address
space.

21 atbcts_no_alloc_to_receive A Receive_Allocate call completed,
but no allocate request was available
to be received.

26 atbcts_inval_event_notif_type The specified event notification type is
not valid.

27 atbcts_inval_event_code The specified event code is not
supported or is not valid for this
service.

28 atbcts_netid_does_not_match The netid retrieved from the side
information data set does not match
the local netid.

29 atbcts_inval_event_code_qual The specified event code qualifier is
not valid or supported.

30 atbcts_no_event_available The Get_Event call completed, but no
event element was available to be
received.

31 atbcts_event_notify_cancelled The call to the Get_Event service was
interrupted because all event
notification requests were cancelled
for this address space.

32 atbcts_get_event_outstanding The call to the Get_Event service was
rejected because a previous
Get_Event call is currently
outstanding.

Return and Reason Codes

Appendix B. Explanation of Return and Reason Codes B-3

Table B-2. Reason Codes and Their Meanings (continued)

Reason
Code
(Decimal)

Symbolic Meaning

33 atbcts_notify_not_set The Get_Event call was rejected
because no event notification is in
effect for this address space.

34 atbcts_inval_queue_keep_time The specified allocate queue keep
time is outside the allowable range.

36 atbcts_unreg_all_no_registers A call to the Unregister_For_Allocates
service specified ″unregister all″ (that
is, the allocate_queue_token was set
to binary zeroes), but this address
space is not registered for any
allocate queues.

37 atbcts_inval_event_get_type The specified event get type is not
valid.

38 atbcts_inval_receive_allc_type The specified receive allocate type is
not valid.

39 atbcts_cannot_determine_netid APPC/MVS cannot determine if the
specified netid is valid.

41 atbcts_buffer_too_small The service failed because the
supplied buffer was not large enough
to contain the requested information.

43 atbcts_inval_partner_lu The service failed because the
supplied partner LU name is not valid.

44 atbcts_luwid_already_associated A Receive_Allocate service failed
because a protected conversation (a
conversation with a synchronization
level of syncpt) and a logical unit of
work identifier (LUWID) were already
associated with the context for the
dispatchable unit of work that issued
the service call. APPC/MVS
abnormally terminates the inbound
conversation that the
Receive_Allocate service tried to
process. On the next conversation
service it calls, the program that tried
to allocate the conversation will
receive a return code indicating
TP_not_available_retry.

Return and Reason Codes

B-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table B-2. Reason Codes and Their Meanings (continued)

Reason
Code
(Decimal)

Symbolic Meaning

45 atbcts_sync_point_manager_error A Receive_Allocate service failed
because APPC/MVS could not
register an inbound protected
conversation (a conversation with a
synchronization level of syncpt) as a
protected logical unit of work with the
system syncpoint manager (RRS).
APPC/MVS abnormally terminates the
inbound conversation that the
Receive_Allocate service tried to
process. On the next conversation
service it calls, the program that tried
to allocate the conversation will
receive a return code indicating
TP_not_available_retry.

Symptom Records for APPC Service Failures
If your program encounters return code 32 (atbcts_service_failure), and reason
code 16 (atbcts_appc_service_failure), an APPC service failure has been detected.
The system writes symptom records that describe the error to the logrec data set.
See z/OS MVS Diagnosis: Tools and Service Aids for more information on retrieving
and reading the logrec data set software record reports.

Section 3 of the symptom record contains the primary symptom string for APPC
service failures:

Table B-3. Symptom String for Service Failure Errors. (Section 3 of the Symptom Record in
the Logrec Data Set.)
Symptom Description
PIDS/5752SCACB Product identifier
RIDS/ATBxxxxx CSECT name
RIDS/ATBxxxxx#L Load module name
LVLS/ddd Product level
PCSS/ATBxxxx The allocate queue service that caused the

error. This field is omitted if the error was not
caused by an allocate queue service.

PRCS/dddddddd The return code returned to the caller of the
service. This field is omitted if the error was
not caused by an allocate queue service.

FLDS/REASON VALU/Hdddddddd The unique reason code that identifies the
APPC service failure.

Section 5 of the symptom record contains the following information for the APPC
service failure:

v The job or user name, in EBCDIC, for the home address space of the caller

v An EBCDIC description of the error (up to 80 characters).

Look for symptom FLDS/REASON VALU/Hdddddddd in section 3 of the symptom
record for the reason code identifying the error, which is one of the following:

Return and Reason Codes

Appendix B. Explanation of Return and Reason Codes B-5

Table B-4. Reason Codes for Service-Failure Errors

Reason
Code

Message Text Explanation

00000006 ERROR IN TRYING TO VERIFY
APPCSERV AUTHORITY.

An error occurred when APPC/MVS
tried to verify the APPCSERV
authority of the caller. This error
occurred while APPC was processing
a call to the Register_For_Allocates
service.

00000007 ERROR RETRIEVING SECURITY
INFORMATION.

An error occurred when APPC/MVS
tried to obtain information about the
caller’s security environment. This
error occurred while APPC was
processing a call to the
Register_For_Allocates service.

The RACF return code and reason
code appear in section 5 of the
symptom record.

System Programmer Response:
Ensure that the correct level of the
security product is installed and is
active. Also check security-related
parameters specified on the
Register_For_Allocates call (such as
user_ID and profile) for proper
authorization.

00000008 ERROR RETRIEVING SIDE
INFORMATION.

An error occurred when APPC/MVS
tried to obtain side information from
the side information file. This error
occurred while APPC was processing
a call to the Register_For_Allocates
service.

00000009 AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal failure occurred during
APPC processing of a call to the
Register_For_Allocates service.

0000000A AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal failure occurred during
APPC processing of a call to the
Register_For_Allocates service.

0000000B FAILURE IN SERIALIZING SERVER
FACILITIES RESOURCES.

Serialization of APPC/MVS server
facilities resources failed during APPC
processing of the
Register_For_Allocates service.

0000000C FAILURE IN SERIALIZING SERVER
FACILITIES RESOURCES.

Serialization of APPC/MVS server
facilities resources failed during APPC
processing of the
Register_For_Allocates service.

0000000D AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal failure occurred during
APPC processing of a call to the
Register_For_Allocates service.

0000000E AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal failure occurred during
APPC processing of a call to either
the Receive_Allocate or
Unregister_For_Allocates service.

Return and Reason Codes

B-6 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Table B-4. Reason Codes for Service-Failure Errors (continued)

Reason
Code

Message Text Explanation

0000000F AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal failure occurred during
APPC processing of a call to either
the Receive_Allocate or
Unregister_For_Allocates service.

00000010 AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal failure occurred during
APPC processing of a call to the
Receive_Allocate service.

00000011 AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal error occurred in
APPC/MVS processing.

00000012 AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal error occurred in
APPC/MVS processing.

00000013 AN INTERNAL FAILURE
OCCURRED IN APPC
PROCESSING.

An internal error occurred in
APPC/MVS processing.

Return and Reason Codes

Appendix B. Explanation of Return and Reason Codes B-7

Return and Reason Codes

B-8 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Appendix C. Sample APPC/MVS Server

This program is the server part of a client/server application, which is written in the
C programming language.

For your reference, the client half of this application appears in “Appendix D.
Sample Client Program” on page D-1. Also, “Appendix E. Sample Error Routine and
Header File” on page E-1 shows the source code for the error routine (SRVERROR)
used by this application, and the C header file used to define error codes for the
SRVERROR routine.

/**/
/* This program is a sample server for a client/server pair */
/* written in C/370 to demonstrate the use of APPC/MVS allocate */
/* queue services. */
/* */
/* COPYRIGHT -- */
/* */
/* (C) Copyright IBM Corp. 1992 */
/* All rights reserved. */
/* U.S, Government Users Restricted Rights -- Use, */
/* duplication, or disclosure restricted by GSA ADP Schedule */
/* Contract with IBM Corp. Program Property of IBM. */
/* */
/* This program is provided to you for tutorial purposes only. */
/* You may not use the program for commercial purposes. */
/* This program is a sample working solution intended */
/* to show the use of APPC/MVS allocate queue services. */
/* Independent of its particular use, this program is */
/* supplied as an example and provided "as is" without */
/* warranty of any kind, either express or implied, including, */
/* but not limited to, the implied warranties of */
/* merchantability and fitness for a particular purpose. */
/* The entire risk about the quality and performance of the */
/* program is with you. Should the program prove defective, */
/* you assume the entire cost of all necessary servicing, */
/* repair, or correction. */
/* */
/* In no event will IBM be liable to you for any damages or */
/* any lost profits, lost savings or other incidental or */
/* consequential damages arising out of the use of or */
/* inability to use the program even if IBM had been advised */
/* of the possibility of such damages, or for any claim by any */
/* other party. */
/* */
/* */
/* MODULE NAME -- */
/* */
/* SRV1MAIN.C */
/* */

© Copyright IBM Corp. 1993, 2001 C-1

/* */
/* ENTRY POINTS -- */
/* */
/* Normal C entry executed on MVS. */
/* */
/* */
/* STATUS -- */
/* */
/* Version 1, Release 0 */
/* */
/* */
/* FUNCTION -- */
/* */
/* This program is provided as an example of APPC/MVS allocate */
/* queue services. This program is the server half of */
/* a client/server pair. The server uses the APPC/MVS */
/* Register_For_Allocates service to establish itself */
/* as an APPC/MVS server. It then proceeds to process inbound */
/* requests received through the Receive_Allocate service. */
/* Each client should immediately grant the server send */
/* control. The server will then send data to the client */
/* and deallocate the conversation. The server will */
/* terminate processing when the Receive_Allocate service */
/* shows that no requests have been received for 5 minutes. */
/* (Note that the 5 minute time-out value is set by a constant */
/* in this program.) */
/* */
/* */
/* INPUT -- */
/* */
/* None */
/* */
/* OUTPUT -- */
/* */
/* None. */
/* */
/* */
/* RETURN INFORMATION -- */
/* */
/* None. */
/* */
/* */
/* CHANGE HISTORY -- */
/* */
/* 08/31/92 - Module created. */
/* */
/**/

Sample APPC/MVS Server

C-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/**/
/* */
/* Include the header files that define the services used by */
/* this program. STDIO and STRING are standard C libraries. */
/* ATBCMC is the interface definition file (IDF) for the CPI-C */
/* services. ERRCDE is the header file for the SRVERROR function */
/* that handles error conditions detected by this program. */
/* ATBCTC is the IDF for APPC/MVS callable transaction services */
/* which include APPC/MVS allocate queue services. */
/* */
/* The '#pragma runopts(execops)' is a C/370 option which permits */
/* the caller to specify runtime options to C/370 before */
/* specifying parameters to this program. This was done to permit */
/* the caller to specify /NOSPIE and /NOSTAE to prevent C/370 */
/* from suppressing a user abend which might be generated by the */
/* SRVERROR function. */
/* */
/**/
#pragma runopts(execops)
#include <STDIO.H>
#include <STRING.H>
#include <ATBCMC.H>
#include <ERRCDE.H>
#include <ATBCTC.H>

/**/
/* */
/* MAINLINE FUNCTION */
/* */
/**/

main()

{
/**/
/* */
/* VARIABLES USED FOR ALLOCATE QUEUE FUNCTIONS */
/* */
/* server_ok - Used as a flag to indicate whether the server */
/* is to continue processing. This flag is set to */
/* 'false' for errors that affect the server's */
/* ability to function. Failure of the server in */
/* processing a single client does not cause the */
/* server to shut down. */
/* */
/* register_successful - Indicates whether the server's call to */
/* the Register_For_Allocates service was */
/* successful. */
/* */

Sample APPC/MVS Server

Appendix C. Sample APPC/MVS Server C-3

/* atbrfa2_tp_name - This is the TP name that the server passes */
/* to the Register For Allocates service. */
/* Actually, this is just a "place holder" */
/* parameter because we are getting the */
/* TP name from the side information file. */
/* We will set the TP name length parameter */
/* to 0 and initialize this variable to blanks. */
/* */
/* atbrfa2_tp_name_length - The TP name length passed to Register */
/* For Allocates. Set to zero because */
/* we will use the TP name that is */
/* defined in the side information file.*/
/* */
/* atbrfa2_local_lu_name - The local LU name passed to Register */
/* For Allocates. Set to blanks because */
/* we will use the local LU name that is */
/* defined in the side information file. */
/* */
/* atbrfa2_partner_lu_name - The 3 filter parameters for */
/* atbrfa2_userid Register For Allocates. Set to */
/* atbrfa2_profile blanks because we don't want to */
/* filter */
/* */
/* atbrfa2_sym_dest_name - The symbolic destination name passed */
/* to Register For Allocates. This will */
/* be used to retrieve the TP name and */
/* local LU name from the side information*/
/* data set. */
/* */
/* qtoken - The allocate queue token returned by APPC/MVS to the */
/* caller of the Register_For_Allocates service. */
/* This token is used in all later APPC/MVS functions */
/* that relate to this allocate queue. */
/* */
/* return_code - The return code from an allocate queue service */
/* */
/* reason_code - The reason code from an allocate queue service */
/* */
/* Note: The string parameters, such as local_lu_name, are */
/* declared as character longer than necessary because we */
/* are using the strcpy function to set them, and this will */
/* append a null ('00'x) to the string. Declaring an extra */
/* character prevents this null character from being */
/* considered part of the passed value. */
/* */

Sample APPC/MVS Server

C-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/**/
int server_ok; /* on-> server has met no errors */
int register_successful;
char atbrfa2_tp_name[65];
long int atbrfa2_tp_name_length;
char atbrfa2_local_lu_name[9];
char atbrfa2_partner_lu_name[18];
char atbrfa2_userid[9];
char atbrfa2_profile[9];
char atbrfa2_sym_dest_name[9];
char qtoken[8];
long int return_code;
long int reason_code;

/**/
/* receive_allocate_type - The receive allocate type parameter */
/* passed to the Receive Allocate service. Initialized */
/* to 'TIMED' to indicate to APPC/MVS that we want to */
/* wait until an allocate request has arrived on the */
/* allocate queue or the time specified by the time_out */
/* parameter to have been exceeded. */
/* */
/* time_out - The time_out_value parameter passed to the Receive */
/* Allocate service. */
/* Because we set the receive_allocate_type to */
/* 'TIMED', this parameter contains the amount */
/* of time we want to wait for a Receive Allocate call */
/* to complete. */
/* */
/* convid - The conversation ID that is returned by the Receive */
/* Allocate service. This identifier will be used */
/* on later communication service calls for this */
/* conversation. */
/* */
/* conv_type - Returned by the Receive Allocate service, this */
/* parameter indicates whether the inbound */
/* conversation is sending data only (mapped) or */
/* data preceded by a two byte length indicator */
/* (basic). */
/* */
/* partner_lu_name - Returned by the Receive Allocate service, */
/* this parameter indicates the logical unit (LU) where the */
/* client transaction program is located. */
/* */
/* mode - Returned by the Receive Allocate service, this parameter */
/* indicates the logon mode name used by the TP which */
/* allocated this conversation. */
/* */
/* sync_level - Returned by the Receive Allocate service, this */
/* parameter indicates whether the conversation has */
/* synchronization level NONE or CONFIRM. */
/* */

Sample APPC/MVS Server

Appendix C. Sample APPC/MVS Server C-5

/* userid - Returned by the Receive Allocate service, this */
/* parameter indicates the user ID that was used by */
/* the partner when the conversation was allocated. */
/* */
/* profile - This returned parameter indicates the profile (or */
/* RACF group name) that was used by the partner when */
/* the conversation was allocated. */
/* */
/**/
unsigned long int receive_allocate_type = ATBCTS_TIMED;
unsigned long int time_out = 300;
char convid[8];
long int conv_type;
char partner_lu_name[17];
char mode[8];
long int sync_level;
char userid[8];
char profile[8];

/**/
/* NOTIFY TYPE STRUCTURE */
/* */
/* Allocate queue services can be issued asynchronously by */
/* supplying the address of an ECB in the notify_type parameter. */
/* This sample program does not use the asynchronous capability */
/* of these APPC/MVS services. This structure is included, however,*/
/* as an example of how you would set up the parameters to request */
/* asynchronous processing. */
/* */
/* To issue the Receive Allocate service asynchronously, */
/* pass an eight byte notify type to the service. */
/* Set the first 4 bytes of this field must be set to an integer 1. */
/* The second four bytes must be set to the address of the ECB */
/* that is to be posted when the service completes. The prototype */
/* for the service, however, expects a 'char *' for this parameter. */
/* So we declare the following UNION. The first part of the */
/* UNION is an 8 character field that we will pass on the parameter */
/* list to APPC/MVS. The second part is a structure containing an */
/* integer (4 bytes) that is the notify type itself and a pointer */
/* (4 bytes) to the ECB. */
/* When using this UNION, we will either set the notify_type_value*/
/* to a '1' (indicating that we request asynchronous processing) */
/* and RAL_ECB will be set to the address of the ECB, or the */
/* notify_type_value will be set to '0' (indicating that we request */
/* synchronous processing). We don't have to set the RAL_ECB */
/* field when notify_type_value is zero (synchronous). */
/* */
/**/
union {

char notify_type_char[8];
struct {

int notify_type_value;
int *RAL_ECB;

} nt_struc;
} the_notify_type;

Sample APPC/MVS Server

C-6 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/**/
/* VARIABLES USED FOR COMMUNICATION SERVICES */
/* */
/* buffer - A buffer into which we will receive data from the */
/* partner TP. */
/* */
/* requested_length - A passed parameter to the Receive service */
/* which indicates the size of our buffer. */
/* */
/* data_received - A returned parameter from Receive that will */
/* indicate whether we received any data. */
/* */
/* received_length - If we received data, this parameter will */
/* tell us how much. */
/* */
/* status_received - This returned parameter will tell us if we */
/* received any status from our partner. */
/* */
/* rts_received - This returned parameter will tell us if our */
/* client has requested SEND control. Not */
/* particularly relevant in this application */
/* because the client always immediately grants */
/* the server SEND control. */
/* */
/* communication_return_code - The return code from APPC/MVS */
/* communication services. */
/* */
/* deallocate_type - used with the Set_Deallocate_Type (CMSDT) */
/* service to set the deallocate type to */
/* deallocate_flush. */
/* */
/* send_length - The amount of data being sent to the client. */
/* Set to the size of the buffer. */
/* */
/**/
char buffer[19];
long int requested_length;
long int data_received;
long int received_length;
long int status_received;
long int rts_received;
long int communication_return_code;
long int deallocate_type = CM_DEALLOCATE_FLUSH;
long int send_length = sizeof(buffer);

Sample APPC/MVS Server

Appendix C. Sample APPC/MVS Server C-7

/**/
/* VARIOUS OTHER LOCAL VARIABLES */
/* */
/* true - a generic constant indicating successful processing */
/* */
/* false - a generic constant indicating a problem */
/* */
/* srverror_return_code - used to test the decision made by */
/* the SRVERROR() function. */
/* */
/**/
const int TRUE = 1;
const int FALSE = 0;
int srverror_return_code;

/**/
/* BEGIN THE ACTUAL FUNCTION */
/**/

/**/
/* */
/* First we indicate that all is well...so far. */
/* */
/**/

server_ok = TRUE;

/**/
/* */
/* Then we set the passed parameters. */
/* */
/* - Notify_type is set to indicate synchronous processing */
/* - TP_name length is set to zero */
/* - Local_LU_name is set to blanks */
/* - Partner_LU_name filter is set to blanks */
/* - User_ID filter is set to blanks */
/* - Profile filter is set to blanks */
/* - Sym_dest_name is set to the name of the entry in the */
/* side information file that defines the TP name and */
/* local LU name that we want to serve. */
/* */
/**/

the_notify_type.nt_struc.notify_type_value = 0;
atbrfa2_tp_name_length = 0;
strcpy(atbrfa2_local_lu_name," ");
strcpy(atbrfa2_partner_lu_name," ");
strcpy(atbrfa2_userid," ");
strcpy(atbrfa2_profile," ");
strcpy(atbrfa2_sym_dest_name,"SRVORDER");

Sample APPC/MVS Server

C-8 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/**/
/* */
/* Call the Register_for_Allocates service. */
/* */
/* If the service is not completely successful, invoke the */
/* SRVERROR function to find out what we should do. */
/* */
/**/

atbrfa2(the_notify_type.notify_type_char,
atbrfa2_sym_dest_name,
&atbrfa2_tp_name_length,
atbrfa2_tp_name,
atbrfa2_local_lu_name,
atbrfa2_partner_lu_name,
atbrfa2_userid,
atbrfa2_profile,
qtoken,
&reason_code,
&return_code);

if (return_code != ATBCTS_OK)
{
error_description.problem = ATBRFA2_RET_CODE_ERROR;
error_description.error_reason.rc_problem.expected_return_code =

ATBCTS_OK;
error_description.error_reason.rc_problem.actual_return_code =

return_code;
server_ok = (srverror(error_description) < server_failure);

}
/**/
/* */
/* Set the register_successful flag to indicate whether the service*/
/* was successful. This flag is used during cleanup processing */
/* to determine whether the Unregister_For_Allocates service is */
/* called. */
/* */
/**/

register_successful = server_ok;

/**/
/* MAIN LOOP */
/* */
/* This is the main loop wherein we will receive allocate requests */
/* from the queue and process them. We exit the loop when the */
/* Receive_Allocate return code shows that the time-out value */
/* has been exceeded. */
/* */
/**/

while (server_ok)
{

Sample APPC/MVS Server

Appendix C. Sample APPC/MVS Server C-9

/**/
/* */
/* Set-up and call a synchronous Receive_Allocate. */
/* */
/* - Set the notify type to request synchronous processing */
/* - Call the service..note that the allocate queue token */
/* is the one returned by the Register_For_Allocates */
/* service. The receive_allocate_type has been set to */
/* 'TIMED'. */
/* */
/**/

the_notify_type.nt_struc.notify_type_value = 0;

atbral2(the_notify_type.notify_type_char,
qtoken,
&receive_allocate_type,
&time_out,
convid,
&conv_type,
partner_lu_name,
mode,
&sync_level,
userid,
profile,
&reason_code,
&return_code);

if (return_code != ATBCTS_OK)
if (return_code == ATBCTS_REQUEST_UNSUCCESSFUL)
if (reason_code == ATBCTS_NO_ALLOC_TO_RECEIVE)
server_ok = FALSE;

else
{
error_description.problem = ATBRAL2_REASON_CODE_ERROR;
error_description.error_reason.reason_problem.

expected_reason_code = ATBCTS_NO_ALLOC_TO_RECEIVE;
error_description.error_reason.reason_problem.

actual_reason_code = reason_code;
server_ok = (srverror(error_description) < server_failure);

}

else
{
error_description.problem = ATBRAL2_RET_CODE_ERROR;
error_description.error_reason.rc_problem.

expected_return_code = ATBCTS_OK;
error_description.error_reason.rc_problem.actual_return_code=

return_code;
server_ok = (srverror(error_description) < server_failure);

}
/* else return code is ok then all is well...proceed */

if (server_ok)
{

Sample APPC/MVS Server

C-10 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/***/
/* */
/* Receive SEND control from the client */
/* - Set the requested_length to zero because we are */
/* expecting to receive send control from the client. */
/* */
/***/

requested_length = 0;

cmrcv (convid,
buffer,
&requested_length,
&data_received,
&received_length,
&status_received,
&rts_received,
&communication_return_code);

/***/
/* */
/* Verify that the results are as expected. */
/* - Did the service complete successfully? */
/* - If so, did we receive SEND control? */
/* */
/***/

if (communication_return_code != CM_OK)
{
error_description.problem = CMRCV_RET_CODE_ERROR;
error_description.error_reason.rc_problem.

expected_return_code = CM_OK;
error_description.error_reason.rc_problem.

actual_return_code = communication_return_code;
srverror_return_code = srverror(error_description);

}
else if (status_received != CM_SEND_RECEIVED)
{
error_description.problem = CMRCV_STATUS_ERROR;
error_description.error_reason.status_problem.

expected_status = CM_SEND_RECEIVED;
error_description.error_reason.status_problem.

actual_status = status_received;
srverror_return_code = srverror(error_description);

}

Sample APPC/MVS Server

Appendix C. Sample APPC/MVS Server C-11

/***/
/* */
/* If all is still well, then send the client the data. */
/* */
/***/
if (server_ok)
{

strcpy(buffer,"123456789012345678");

cmsend(convid,
buffer,
&send_length,
&rts_received,
&communication_return_code);

if (communication_return_code != CM_OK)
{
error_description.problem = CMSEND_RET_CODE_ERROR;
error_description.error_reason.rc_problem.

expected_return_code =
CM_OK;

error_description.error_reason.rc_problem.
actual_return_code = communication_return_code;

srverror_return_code = srverror(error_description);
}

/***/
/* */
/* At this point, we could wait for some return data from */
/* the client, but since this is just a sample we will */
/* go ahead and deallocate the conversation. The default */
/* deallocate type is deallocate_sync_level. So, if the */
/* partner (who allocated the conversation) has set the */
/* sync_level to confirm, the deallocate request will */
/* wait until the partner issues Confirmed. Since we */
/* don't want to delay the server waiting for the client */
/* to acknowledge that we are done, we change the */
/* deallocate type to deallocate_flush using the CMSDT */
/* (Set Deallocate Type) service. */
/* */
/***/
cmsdt(convid,

&deallocate_type,
&communication_return_code);

if (communication_return_code != CM_OK)
{
error_description.problem = CMSEND_RET_CODE_ERROR;
error_description.error_reason.rc_problem.

expected_return_code = CM_OK;
error_description.error_reason.rc_problem.

actual_return_code = communication_return_code;
srverror_return_code = srverror(error_description);

}

Sample APPC/MVS Server

C-12 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/***/
/* */
/* And then deallocate the conversation. */
/* */
/***/
cmdeal(convid,

&communication_return_code);

if (communication_return_code != CM_OK)
{
error_description.problem = CMDEAL_RET_CODE_ERROR;
error_description.error_reason.rc_problem.

expected_return_code = CM_OK;
error_description.error_reason.rc_problem.

actual_return_code = communication_return_code;
srverror_return_code = srverror(error_description);

}
}

}

/**/
/* */
/* At the bottom of the loop, check to see if any of the */
/* conversation services have received a return code from SRVERROR */
/* indicating that the server should shut down. */
/* */
/**/

if (srverror_return_code==server_failure)
server_ok = false;

}

Sample APPC/MVS Server

Appendix C. Sample APPC/MVS Server C-13

/**/
/* */
/* After exiting the loop either because of an error or because */
/* Receive_Allocate timed out, we will clean up after ourselves by */
/* unregistering from the allocate queue we created. We do this */
/* by calling the Unregister For Allocates service. Note that */
/* this is done only if a flag shows that the Register_For_Allocates*/
/* call was successful. */
/* */
/* The only input parameters are the notify_type and the allocate */
/* queue token. The notify type is set to indicate synchronous */
/* processing and the queue token is still set from the Register */
/* For_Allocates service. */
/* */
/**/

if (register_successful)
{
the_notify_type.nt_struc.notify_type_value = 0;

atbura2(the_notify_type.notify_type_char,
qtoken,
&reason_code,
&return_code);

if (return_code != ATBCTS_OK)
{
error_description.problem = ATBURA2_RET_CODE_ERROR;
error_description.error_reason.rc_problem.expected_return_code =

CM_OK;
error_description.error_reason.rc_problem.actual_return_code =

return_code;
srverror_return_code = srverror(error_description);

}
}

/**/
/* */
/* That's it! */
/* */
/**/

return 0;
}

C-14 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Appendix D. Sample Client Program

This program is the client part of the sample client/server application that began in
“Appendix C. Sample APPC/MVS Server” on page C-1.

“Appendix E. Sample Error Routine and Header File” on page E-1 shows the source
code for the error routine (SRVERROR) used by this application, and the C
language header file used to define error codes for the SRVERROR routine.

/**/
/* This program is a sample client for a client/server pair */
/* written in C/370 to demonstrate the use of APPC/MVS allocate */
/* queue services. This client program uses the CPI-C */
/* interface and uses no MVS-specific services. */
/* */
/* */
/* COPYRIGHT -- */
/* */
/* (C) Copyright IBM Corp. 1992 */
/* All rights reserved. */
/* U.S, Government Users Restricted Rights -- Use, */
/* duplication, or disclosure restricted by GSA ADP Schedule */
/* Contract with IBM Corp. Program Property of IBM. */
/* */
/* This program is provided to you for tutorial purposes only. */
/* You may not use the program for commercial purposes. */
/* This program is a sample working solution intended */
/* to show the use of APPC/MVS allocate queue services. */
/* Independent of its particular use, this program is */
/* supplied as an example and provided "as is" without */
/* warranty of any kind, either express or implied, including, */
/* but not limited to, the implied warranties of */
/* merchantability and fitness for a particular purpose. */
/* The entire risk about the quality and performance of the */
/* program is with you. Should the program prove defective, */
/* you assume the entire cost of all necessary servicing, */
/* repair, or correction. */
/* */
/* In no event will IBM be liable to you for any damages or */
/* any lost profits, lost savings or other incidental or */
/* consequential damages arising out of the use of or */
/* inability to use the program even if IBM had been advised */
/* of the possibility of such damages, or for any claim by any */
/* other party. */
/* */
/* */
/* MODULE NAME -- */
/* */
/* DRV1.C */
/* */

© Copyright IBM Corp. 1993, 2001 D-1

/* */
/* ENTRY POINTS -- */
/* */
/* Normal C entry executed on the client platform. */
/* */
/* */
/* STATUS -- */
/* */
/* Version 1, Release 0 */
/* */
/* */
/* FUNCTION -- */
/* */
/* This program is provided as an example of APPC/MVS */
/* allocate queue services. This program is the client half */
/* of a client/server pair. It invokes the server and waits */
/* for the server to respond by sending data. */
/* */
/* */
/* INPUT -- */
/* */
/* None */
/* */
/* OUTPUT -- */
/* */
/* None. */
/* */
/* */
/* RETURN INFORMATION -- */
/* */
/* None. */
/* */
/* */
/* CHANGE HISTORY -- */
/* */
/* 08/31/91 - Module created. */
/* */
/**/
/**/
/* */
/* Include the header files which define the services used by */
/* this program. STDIO and STRING are standard C libraries. */
/* ATBCMC is the interface definition file (IDF) for the CPI-C */
/* services. ERRCDE is the header file for the srverror function */
/* that handles error conditions detected by this program. */
/* */
/* The '#pragma runopts(execops)' is a C/370 option which permits */
/* the caller to specify runtime options to C/370 before */
/* specifying parameters to this program. This was done to permit */
/* the caller to specify /NOSPIE and /NOSTAE to prevent C/370 */
/* from suppressing a user abend which might be generated by the */
/* srverror function. */
/* */

Sample Client Program

D-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/**/
#pragma runopts(execops)
#include <STDIO.H>
#include <STRING.H>
#include <ATBCMC.H>
#include <ERRCDE.H>

/**/
/* */
/* MAINLINE CODE */
/* */
/**/
main()

{

/**/
/* */
/* DECLARE VARIABLES */
/* */
/* conv_id - conversation identifier returned by APPC on the CMINIT */
/* call and used on subsequent calls */
/* */
/* sym_dest - symbolic destination name identifying the server */
/* (TP name, LU name, and logon mode). Note that this */
/* variable is one character longer than the symbolic */
/* destination name parameter. Since a value is placed */
/* in this parameter using the strcpy() function we must */
/* provide an extra character for the null since it */
/* must not be a part of the passed value. */
/* */
/* return_code - used to hold return codes from APPC services */
/* */
/* buffer - The buffer which is used to receive data from the */
/* partner program (server). The buffer is 19 characters */
/* long because we know that is how much data the server */
/* will be sending. */
/* */
/* requested_length - The length of the buffer we will provide to */
/* the receive (CMRCV) service. */
/* */
/* data_received - A returned parameter from the CMRCV service which */
/* will indicate whether any data was received from */
/* the server. */
/* */
/* received_length - A returned parameter from the CMRCV server which*/
/* will indicate the amount of data placed into */
/* our buffer by APPC. */
/* */
/* status_received - A returned parameter from the CMRCV service */
/* which will indicate whether any status was */
/* received from the server. */
/* */

Sample Client Program

Appendix D. Sample Client Program D-3

/* rts_received - A returned parameter from the CMRCV service which */
/* indicates whether the partner has requested send */
/* control. Should always be set to */
/* rts_not_received in this application since this */
/* program always immediately grants the server */
/* send control. */
/* */
/* srverror_return_code - The return code from the srverror function.*/
/* */
/**/
char conv_id[8];
char sym_dest[9];
long int return_code;
char buffer[19];
long int requested_length;
long int data_received;
long int received_length;
long int status_received;
long int rts_received;
int srverror_return_code;

/**/
/* */
/* Set the sym_dest variable to the symbolic destination name. */
/* There must be an entry defined in the side information table */
/* for this value. It must contain an LU name and TP name which */
/* correspond to the values for which the server has registered. */
/* See APPC/MVS Planning and Management for information about adding */
/* Side Information. */
/* */
/* The srverror function return code is initialized to zero.
/* */
/**/
strcpy(sym_dest,"SRVORDER");
srverror_return_code = 0;

/**/
/* */
/* INITIALIZE THE CONVERSATION */
/* */
/* Call the Initialize_Conversation service (CMINIT), providing */
/* the symbolic destination name defined just above. If all goes */
/* well, a conversation identifier will be returned in the conv_id */
/* variable. */
/* */
/* If all is not well (i.e. the return code is not CM_OK) then */
/* invoke the srverror function providing a description of the */
/* problem encountered (CMINIT return code error), the expected */
/* return code value, and the actual return code received. */
/* The srverror function will then act appropriately and */
/* return a return code indicating whether to continue processing. */
/* */

Sample Client Program

D-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/* Of course, in this case any non-zero return code should result */
/* in termination of processing; the srverror function, however, */
/* can update an error log, issue an operator message, or take other */
/* appropriate action. */
/* */
/**/
CMINIT(conv_id,

sym_dest,
&return_code);

if (return_code != CM_OK)
{
error_description.problem = CMINIT_RET_CODE_ERROR;
error_description.error_reason.rc_problem.expected_return_code =

CM_OK;
error_description.error_reason.rc_problem.actual_return_code =

return_code;
srverror_return_code = srverror(error_description);

}

/**/
/* */
/* ALLOCATE THE CONVERSATION */
/* */
/* If all is well, allocate the conversation by calling the CMALLC */
/* service. The only input parameter is the conversation identifier */
/* returned by CMINIT. */
/* */
/* If the allocate function fails (non-zero return code), we again */
/* check with the srverror function to find out if we should */
/* continue processing. */
/* */
/**/

if (srverror_return_code==0)
{
CMALLC(conv_id,

&return_code);

if (return_code != CM_OK)
{
error_description.problem = CMALLC_RET_CODE_ERROR;
error_description.error_reason.rc_problem.expected_return_code =

CM_OK;
error_description.error_reason.rc_problem.actual_return_code =

return_code;
srverror_return_code = srverror(error_description);

}
}

Sample Client Program

Appendix D. Sample Client Program D-5

/**/
/* */
/* RECEIVE DATA FROM THE SERVER */
/* */
/* Next two tasks are accomplished by calling one function. When */
/* the CMRCV service is called from send state, notification is */
/* first sent to the server that it has been granted send control */
/* and then this program waits for the server to send data. */
/* Note that we set the requested_length parameter to the size of */
/* the receive buffer. */
/* */
/* Next the returned parameters will be examined and the srverror */
/* function invoked if any unexpected results occur. */
/* */
/**/
if (srverror_return_code==0)
{
requested_length = sizeof(buffer);

cmrcv (conv_id,
buffer,
&requested_length,
&data_received,
&received_length,
&status_received,
&rts_received,
&return_code);

Sample Client Program

D-6 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/**/
/* */
/* The first returned parameter to examine is naturally the return */
/* code. Two values may be expected on this call. Since we know */
/* the partner will deallocate the conversation after sending the */
/* data, we expect to get a return code of CM_DEALLOCATED_NORMAL. */
/* It is possible, however, that the return code may not have arrived*/
/* yet, so a return code of CM_OK might be returned. If neither */
/* value is found, the srverror function is invoked. */
/* */
/**/

if (return_code != CM_OK)
if (return_code != CM_DEALLOCATED_NORMAL)
{
error_description.problem = CMRCV_RET_CODE_ERROR;
error_description.error_reason.rc_problem.

expected_return_code = CM_OK;
error_description.error_reason.rc_problem.

actual_return_code = return_code;
srverror_return_code = srverror(error_description);

}

/**/
/* */
/* If the return code is OK or DEALLOCATED_NORMAL, then we can */
/* examine the data received field to determine if any data was */
/* received. If data was received, then we can examine the */
/* received_length field to determine how much data was received. */
/* If we received the expected length, then we can proceed to */
/* examine the data itself to verify it is as expected. */
/* */
/* Note that in a real application the actual value of the expected */
/* data would probably not be known, but this check can be easily */
/* replaced with a check verifying that the data is in some expected */
/* format (for example, if the expected data were inventory record */
/* updates you might expect the data to consist of item identifiers */
/* and quantities in four byte integer pairs). */
/* */
/* If any returned values are not as expected, the srverror function */
/* is invoked. */
/* */
/**/

Sample Client Program

Appendix D. Sample Client Program D-7

if ((return_code==CM_OK)|(return_code==CM_DEALLOCATED_NORMAL))
{
if (data_received!=CM_COMPLETE_DATA_RECEIVED)
{
error_description.problem = CMRCV_DATA_RCV_ERROR;
error_description.error_reason.data_rcv_problem.

expected_data_rcv = CM_COMPLETE_DATA_RECEIVED;
error_description.error_reason.data_rcv_problem.

actual_data_rcv = data_received;
srverror_return_code = srverror(error_description);

}

if (srverror_return_code == 0)
{
if (received_length != requested_length)
{
error_description.problem = CMRCV_RCVD_LEN_ERROR;
error_description.error_reason.length_problem.

expected_length = requested_length;
error_description.error_reason.length_problem.

actual_length = received_length;
srverror_return_code = srverror(error_description);

}

if (srverror_return_code == 0)
{
if (strcmp(buffer,"123456789012345678"))
{
error_description.problem = CMRCV_BUFFER_ERROR;
error_description.error_reason.data_problem.

expected_data = "123456789012345678";
error_description.error_reason.data_problem.

actual_data = buffer;
srverror_return_code = srverror(error_description);

}
}

}
/**/
/* */
/* At this point we have verified that all the information we */
/* expected to receive has arrived. We have not examined the status */
/* received field since we expected to receive no status. Just to */
/* be complete, we will verify that we did in fact receive no status */
/* and invoke the srverror function if status did turn up. */
/* Note that this check occurs inside a conditional which ensures */
/* that we only examine the status_received field when the return */
/* code is CM_OK since the status field is not set for the */
/* CM_DEALLOCATED_NORMAL return code (or other non-zero return codes)*/
/* */
/**/

Sample Client Program

D-8 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

if (srverror_return_code == 0)
{
if (return_code == CM_OK)
{
if (status_received != CM_NO_STATUS_RECEIVED)
{
error_description.problem = CMRCV_STATUS_ERROR;
error_description.error_reason.status_problem.

expected_status = CM_NO_STATUS_RECEIVED;
error_description.error_reason.status_problem.

actual_status = status_received;
srverror_return_code = srverror(error_description);

}
}

}
}

}
/**/
/* */
/* At this point, the client has received the data from the server */
/* and could perform any processing required such as updating a */
/* local database with new information. */
/* */
/**/
/**/
/* */
/* As mentioned above, it is possible the notification of the end */
/* of the conversation might not have arrived on the first receive */
/* as a DEALLOCATED_NORMAL return code. In this case, we need to */
/* issue another CMRCV to get this return code. Note that we set */
/* the requested_length to zero for this receive since we expect no */
/* data to arrive. After the receive completes, the return code */
/* is inspected and the srverror function is invoked if an */
/* unexpected value is found. We also examine the data_received */
/* field to verify it is set to CM_NO_DATA_RECEIVED. */
/* */
/**/

Sample Client Program

Appendix D. Sample Client Program D-9

if (srverror_return_code == 0)
{
if (return_code == CM_OK)
{
requested_length = 0;

cmrcv (conv_id,
buffer,
&requested_length,
&data_received,
&received_length,
&status_received,
&rts_received,
&return_code);

if (return_code != CM_DEALLOCATED_NORMAL)
{
error_description.problem = CMRCV_RET_CODE_ERROR;
error_description.error_reason.rc_problem.

expected_return_code = CM_DEALLOCATED_NORMAL;
error_description.error_reason.rc_problem.

actual_return_code = return_code;
srverror_return_code = srverror(error_description);

}

if (srverror_return_code == 0)
{
if (data_received != CM_NO_DATA_RECEIVED)
{
error_description.problem = CMRCV_DATA_RCV_ERROR;
error_description.error_reason.data_rcv_problem.

expected_data_rcve = CM_NO_DATA_RECEIVED;
error_description.error_reason.data_rcv_problem.

actual_data_rcv = data_received;
srverror_return_code = srverror(error_description);

}
}

}
}

/**/
/* */
/* The function of the client is complete. */
/* */
/**/
return srverror_return_code;

}

D-10 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Appendix E. Sample Error Routine and Header File

This program is the error routine that can be called by either the sample server (see
“Appendix C. Sample APPC/MVS Server” on page C-1) or sample client program
(see “Appendix D. Sample Client Program” on page D-1) when an error is detected.
When called, SRVERROR writes an error message (“An error has occurred”) to the
server’s joblog and returns control.

This program uses variables defined in a separate C language header file. See
“Header File”.

Header File
This is the C language header file used to define error code variables for the
sample error routine, SRVERROR. Compile this header file with both the sample
client and server programs included in this book.

#include <STDIO.H>
#include <STRING.H>
#include <ATBCMC.H>
#include <ATBCTC.H>

int srverror();

{

printf("An error has occurred\n");

/*The error handling code should be placed here. */
/* */
return;

}

© Copyright IBM Corp. 1993, 2001 E-1

/**/
/* */
/* SRVERROR HEADER FILE */
/* */
/* This is the header file for the sample error routine, SRVERROR. */
/* */
/* The calling program passes to SRVERROR information that */
/* indicates the type of error that occurred and the expected and */
/* actual value for the returned parameter which was in error. */
/* This information is passed in the structure described below. */
/* */
/* SRVERROR examines the information, logs the error, if */
/* appropriate, and returns one of the following return codes: */
/* */
/* no_server_error - indicates no serious error has occurred and */
/* processing should continue normally. */
/* */
/* conversation_failure - indicates a failure in processing the */
/* conversation. No further processing */
/* should be done for this conversation. */
/* If the calling program is a server, */
/* the program does not end because of */
/* this error. */
/* */
/* server_error - indicates a failure in processing for the server.*/
/* Server processing should be terminated. */
/* */
/**/

int srverror();
#define no_server_error 0
#define conversation_failure 4
#define server_failure 8

Sample Error Routine and Header File

E-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

/**/
/* STRUCTURE FOR COMMUNICATING ERRORS */
/* */
/* This data structure is passed to the SRVERROR function */
/* to describe the error encountered. The first component */
/* of the structure is the error_type, which is a numeric */
/* value that describes the APPC callable service that */
/* received an unexpected result and the parameter on */
/* the call that appears to be in error. */
/* */
/* Following the error_type indicator are the expected value */
/* of the parameter apparently in error and the actual */
/* value returned by the call. In the case of numeric */
/* parameters, the values are passed in the structure. */
/* In the case of character parameters, a pointer to the */
/* character string is passed. */
/* */
/**/

struct {
int problem;
union {

struct {
long int expected_return_code;
long int actual_return_code;
} rc_problem;

struct {
long int expected_reason_code;
long int actual_reason_code;
} reason_problem;

struct {
char *expected_data;
char *actual_data;
} data_problem;

struct {
long int expected_status;
long int actual_status;
} status_problem;

struct {
long int expected_data_rcv;
long int actual_data_rcv;
} data_rcv_problem;

struct {
long int expected_length;
long int actual_length;
} length_problem;

} error_reason;
} error_description;

#define ATBRFA2_RET_CODE_ERROR 168
#define ATBRAL2_RET_CODE_ERROR 176
#define ATBRAL2_REASON_CODE_ERROR 177
#define ATBURA2_RET_CODE_ERROR 188
#define CMALLC_RET_CODE_ERROR 202
#define CMDEAL_RET_CODE_ERROR 206
#define CMINIT_RET_CODE_ERROR 218
#define CMRCV_BUFFER_ERROR 220
#define CMRCV_DATA_RCV_ERROR 221
#define CMRCV_RCVD_LEN_ERROR 222
#define CMRCV_STATUS_ERROR 223
#define CMRCV_RET_CODE_ERROR 225
#define CMSEND_RET_CODE_ERROR 228

Sample Error Routine and Header File

Appendix E. Sample Error Routine and Header File E-3

Sample Error Routine and Header File

E-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Glossary

This glossary defines technical terms and
abbreviations used in APPC/MVS documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate APPC/MVS
book or view the IBM Glossary of Computing
Terms, located on the Internet at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from
American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standard (ANSI).
Copies may be purchased from the American
National St Institute, 11 West 42nd Street, New
York, New York 10036.

A
access method control block (ACB). A control block
that links an application program to an access method
such as VSAM or VTAM.

access method. A software component in a processor
for controlling the flow of information.

adjacent nodes. Nodes that are connected to a given
node by one or more links with no intervening nodes.

Advanced Program-to-Program Communication
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a SNA network. APPC is the implementation, on a
given system, of SNA’s logical unit type 6.2. See also
logical unit type 6.2 and APPC/MVS.

allocate queue. In APPC, a structure containing
elements that represent requests to allocate (start) a
conversation with an APPC/MVS server. APPC/MVS
queues allocate requests on a first-in, first-out (FIFO)
basis until they are selected (received) by an
APPC/MVS server.

allocate queue keep time. An APPC/MVS server can
specify a keep time for an allocate queue for which it is
registered. Keep time is the number of seconds
APPC/MVS maintains an allocate queue when there are
no servers for an allocate queue. For example, keep
time would take effect when the last server of an
allocate queue unregisters.

allocate queue token. When an APPC/MVS server
registers to serve inbound allocate requests, APPC/MVS
returns an allocate queue token to the server. This
token uniquely identifies the queue of allocate requests
(or allocate queue) to be served. On subsequent calls to
APPC/MVS services, the server uses the allocate queue

token to indicate the allocate queue upon which a
requested function is to be performed.

allocate request. In APPC, a request from a
transaction program to allocate (start) a conversation
with another transaction program. The request may be
inbound (arriving from the network for a local
transaction program) or outbound (going from a local
transaction program onto the network).

APPC. See Advanced Program-to-Program
Communication.

APPC component. The component of MVS that is
responsible for extending LU 6.2 and CPI
Communications services to applications running in any
MVS address space. Includes APPC conversation and
scheduling services.

APPC/MVS. The implementation of SNA’s LU 6.2 and
related communication services in the MVS base control
program.

APPC/MVS server. In APPC, an MVS application
program that uses the APPC/MVS Receive_Allocate
callable service to process work requests on behalf of
one or more requestor programs (client TPs). An
APPC/MVS server can serve multiple client TPs serially
or concurrently.

APPC/MVS transaction scheduler. A program
supplied by APPC/MVS that is responsible for
scheduling, initiating, and terminating MVS TPs in
response to inbound work requests.

APPC/VM. The implementation of APPC on a VM
system.

APPC/VTAM. The implementation of APPC on VTAM.

Application-to-application communication. A set of
inter-program communication services that support
cooperative transaction processing in an SNA network.
See also logical unit type LU 6.2.

application. A collection of software components, or
programs, used to perform specific types of
user-oriented work on a computer. Compare with
distributed application.

B
backout. The process of restoring data changed by an
application program to the state at its last sync point.
Synonymous with rollback and abort

base logical unit. In APPC/MVS, the default logical
unit for outbound work. When a transaction program
allocates a conversation but leaves the Local_LU_name

© Copyright IBM Corp. 1993, 2001 F-1

http://www.ibm.com/ibm/terminology

parameter blank, the system can use a base LU to
handle the conversation. A base LU can be associated
with a transaction scheduler, or it can be a NOSCHED
LU.

See also system base LU.

basic conversation. A type of conversation in which
programs exchange data records in an SNA-defined
format. This format is a stream of data containing 2-byte
length prefixes that specify the amount of data to follow
before the next prefix. Contrast with mapped
conversation.

bind. In SNA, a request to activate a session between
two logical units.

boundary function. A capability of a subarea node to
provide protocol support for attached peripheral nodes.

C
call. See communication call.

change number of sessions. This is a set of verbs
provided by SNA that allow an application to change the
(LU,mode) session limit, which controls the number of
LU-LU sessions per mode name that are available
between two LUs for allocation to conversations.

class of service. A designation of the path control
network characteristics, such as path security,
transmission priority, and bandwidth, that apply to a
particular session.

client. A functional unit that receives shared services
from a server.

client/server. The model of interaction in distributed
data processing in which a program at one site sends a
request to a program at another site and awaits a
response. The requesting program is called a client; the
answering program is called a server.

CNOS. See change number of sessions.

commit. (1) To end the current scope of recovery and
begin a new one. (2) To make all changes permanent
that were made to one or more database files since the
last commit or backout operation, and make the
changed records available to other users.

committed change. A database change that will not
be backed out during system failure. Changes made by
a logical unit of work are committed when the sync point
at the end of the logical unit of work is complete.

Common Programming Interface. Provides
languages, commands and calls that allow the
development of applications that are more easily
integrated and moved across multiple environments.

communication call. A conversation statement that
transaction programs can issue to communicate through
the LU 6.2 protocol boundary. The specific calls that a
transaction program can issue are determined by the
program’s current conversation state. See also verb.

communication controller node. A subarea node that
contains a network control program.

communications interface. A uniform set of calls
within the Common Programming Interface that different
systems use to request services. See also
communication call and verb.

configuration. The arrangement of a computer system
or network as defined by the nature, number, and chief
characteristics of its functional units.

contention loser. When the LUs at both ends of a
session request to allocate a conversation
simultaneously, the contention loser is the LU that must
request and receive permission from the session partner
LU to allocate the conversation. Contrast with
contention winner .

contention winner. When the LUs at both ends of a
session request to allocate a conversation
simultaneously, the contention winner is the LU that can
allocate the conversation without requesting permission
from the session partner LU. Contrast with contention
loser .

conversation. A logical connection between two
programs over an LU type 6.2 session that allows them
to communicate with each other while processing a
transaction. See also basic conversation and mapped
conversation.

conversation characteristics. The attributes of a
conversation that determine the functions and
capabilities of programs within the conversation.

conversation_ID. An 8-byte identifier, used in
Get_Conversation calls, that uniquely identifies a
conversation. It is returned from APPC/MVS on the
CMINIT, ATBALC2, ATBALLC, ATBGETC, and ATBRAL2
calls and is required as input on subsequent
APPC/MVS calls.

conversation partner. One of the two programs
involved in a conversation.

conversation state. The condition of a conversation
that reflects what the past action on that conversation
has been and that determines what the next set of
actions may be.

coupling services. In a sysplex, the functions of XCF
that transfer data and status among members of a
group residing on one or more MVS systems in the
sysplex.

CPI. See Common Programming Interface.

Glossary

F-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

cross-system coupling facility (XCF). XCF provides
the MVS coupling services that allow programs on MVS
systems in a multisystem environment to communicate
(send and receive data) with programs on MVS
systems.

D
database token. In APPC/MVS, a 1- through
8-character name used in a security definition to
represent a TP profile or side information file name.

data channel. A device that connects a processor and
main storage with I/O control units.

data link control protocol. Specifications for
interpreting control data and transmitting data across a
link.

directory services. Services for resolving user
identifications of network components to network routing
information.

domain. A system services control point (SSCP) and
the resources that it can control.

E
end user. The ultimate source or destination of data
flowing through an SNA network. An end user can be
an application program or a workstation operator.

event queue. Each APPC/MVS server can be
associated with an event queue. A server can request to
be notified of events related to an allocate queue for
which it is registered. When such an event occurs,
APPC/MVS places an element on the server’s event
queue. The server can determine which event occurred
by examining the element (through the Get_Event
service).

F
FMH-5. Functional Management Header 5 -- an SNA
data structure that APPC uses to pass requests to
allocate transaction program conversations between
logical units.

fully qualified name. Synonym for network-qualified
name.

G
generic resource name. A name that represents
multiple APPC/MVS logical units (LUs) that provide the
same function in order to handle session distribution
and balancing.

generic userid. In APPC/MVS, a userid, specified in
the TP profile, that provides the initial security

environment for a multi-trans TP. The generic userid
covers the TP’s initial processing until a successful
Get_Transaction call is made. The generic userid also
covers termination processing, and any processing
following a Return_Transaction call until a subsequent
successful Get_Transaction call.

H
half-duplex protocol. A communications protocol
where only one communications partner can send data
at a time.

host node. A subarea node that contains a system
services control point.

I
inbound request. A request arriving at a logical unit
(LU) from a partner transaction program. The LU must
establish the environment and start the local transaction
program that is to handle the request. See also allocate
request.

inbound transaction program. A transaction program
on MVS that is initiated and scheduled in response to
an inbound request from a partner transaction program.
Contrast with outbound transaction program.

J
JCL. See Job Control Language.

JECL. See Job Entry Control Language.

Job Control Language. A problem-oriented language
designed to express statements in a job that identify the
job or describe its requirements to an operating system.

Job Entry Control Language. A problem-oriented
language designed to express statements in a job that
describe its requirements to an operating system’s job
entry subsystem.

jobid. See job identifier.

job identifier. The job identifier is a unique value that
can be used to uniquely identify a JES job.

K
keep time. see allocate queue keep time

L
layer. A layer is a grouping of related functions that
are logically separate from other functions; the
implementation of the functions in one layer can be
changed without affecting functions in other layers.

Glossary

Glossary F-3

link. A link is a transmission medium and data link
control component that together transmit data between
adjacent nodes.

local transaction program. The program being
discussed within a particular context. Contrast with
partner transaction program.

logical unit. A port providing formatting, state
synchronization, and other high-level services through
which an end user communicates with another end user
over an SNA network.

logical unit of work. The processing a program
performs from one sync point to the next.

logical unit type 6.2. The SNA logical unit type that
supports general communication between programs in a
cooperative processing environment; the SNA logical
unit type on which CPI communications and APPC/MVS
TP conversation services are built.

logon mode. A logon mode contains the parameters
and protocols that determine a session’s characteristics.
Logon modes are defined in VTAM’s mode table in
SYS1.VTAMLIB.

LU. See logical unit.

LU=local. In APPC/MVS, a situation in which a pair of
communicating transaction programs are on the same
MVS system.

LU=own. In SNA terms, a situation in which a pair of
communicating transaction programs are defined to the
same logical unit (LU).

M
management services. In SNA, functions distributed
among network components to operate, manage, and
control the network.

mapped conversation. A type of conversation in
which programs exchange data records with arbitrary
data formats agreed upon by the applications
programmers. Mapped conversations use mapped verbs
that do not require the prefix information used in basic
verbs. Contrast with basic conversation.

mode name. A symbolic name for a set of session
characteristics. For LU 6.2, a mode name and a partner
LU name together define a session or a group of
parallel sessions having the same characteristics.

multi-trans. Multi-trans scheduling allows properly
designed TPs to remain active between conversations
and handle multiple inbound conversations in sequence,
without having to deallocate and reallocate resources.
Because they can be accessed by multiple users,
multi-trans TPs are responsible for the security of their
resources and conversations. Contrast with standard.

multi-trans shell. The outer level of a transaction
program with a TP_schedule_type of multi-trans, which
sets up an environment and accepts inbound
conversation requests in sequence by calling the
Get_Transaction (ATBGTRN) service. The shell may
also call the Return_Transaction (ATBRTRN) service to
restore its shell environment for other processing
between conversations. For more information, see
TP_Schedule_Type.

N
network addressable unit. A logical unit, physical
unit, or system services control point.

network-qualified name. A name that uniquely
identifies a specific resource (such as an LU) within a
specific network. It consists of a network identifier and a
resource name, each of which is a 1- to 8-byte symbol
string. Synonymous with fully qualified name.

node. An end point of a link, or a junction common to
two or more links in a network. Nodes can be
processors, controllers, or workstations. Nodes can vary
in routing and other functional capabilities.

NOSCHED logical unit (LU). In APPC/MVS, a logical
unit (LU) that is not associated with a transaction
scheduler. Such LUs do not require a transaction
scheduler to be started to be active. NOSCHED LUs
are used by outbound transaction programs and
APPC/MVS servers.

O
one-way-half duplex. The format of APPC
communications between two transaction programs.
One transaction program is in ‘send’ state and the other
is in ‘receive’ state.

outbound request. A request arriving at a logical unit
(LU) from a local transaction program. The LU must
place the request on the SNA network. See also
allocate request.

outbound transaction program. In APPC, a
transaction program that requests a conversation with a
partner (inbound) transaction program. The outbound
TP issues an allocate request to allocate (start) the
conversation. Contrast with inbound transaction
program.

P
pacing. A technique by which a receiving component
controls the rate of transmission by a sending
component to prevent overrun or congestion.

partner. See conversation partner.

Glossary

F-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

partner transaction program. The program at the
other end of a conversation with respect to the local
program. Contrast with local program.

peripheral node. A node that uses local addresses
and therefore is not affected by changes in network
addresses. A peripheral node requires boundary
function assistance from an adjacent subarea node.

persistent sessions. The option for VTAM persistent
sessions allows LU-LU sessions to remain active during
interruptions in APPC/MVS service and preserves
conversation requests until APPC/MVS service
resumes. The PSTIMER parameter in the APPCPMxx
parmlib member’s LUADD statement controls whether
sessions persist and for how long.

persistent verification. Persistent verification (PV) is
a way of reducing the number of password
transmissions, by eliminating the need to provide a
userid and password on each attach (allocate) during
multiple conversations between a user and a remote
LU. The user is verified during the sign-on process and
remains verified until the user has been signed-off the
remote LU.

physical unit. The component that manages and
monitors the resources of a node as requested by a
system services control point.

privilege. An identification that a product or installation
defines in order to differentiate SNA service transaction
programs from other programs, such as application
programs.

protected conversation. An LU 6.2 conversation that
has a synchronization level of syncpt, and that supports
two-phase commit protocols for resource recovery and
resynchronization protocols. Contrast with unprotected
conversation.

protected resource. (1) A resource defined to RACF
for the purpose of controlling access to the resource.
Some of the resources that can be protected by RACF
are DASD and tape data sets, DASD volumes, tape
volumes, terminals, and any other resources defined in
the class descriptor table. (2) A resource (for example, a
database) that can be modified only in accordance with
two-phase commit protocols.

protocol. The meaning of, and the sequencing rules
for, requests and responses used for managing a
network, transferring data, and synchronizing the states
of network components.

protocol boundary. A software connection between
nodes that provides program-to-program communication
through either a set of conversation verbs or high-level
language subroutine calls.

PU. See physical unit.

R
receive state. The condition of a conversation in
which a transaction program can receive data.

registered transaction program. A transaction
program that performs a specialized function on behalf
of an LU.

resource. Any facility of a computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs.

S
SDLC. See Synchronous Data Link Control.

SDSF. See System Display and Search Facility.

security information. For APPC/MVS, a userid,
password, and security profile name passed on an
allocate request from a transaction program to its
partner. The partner’s system can verify the information
and permit or deny the request accordingly.

security profile. For APPC/MVS, an optional
character string passed as security information on an
allocate request from a transaction program to its
partner. When the partner is on MVS with RACF
protection, the system treats the security profile as a
RACF groupid, and can verify that the requester has
access to that group.

send state. The condition of a conversation in which a
transaction program can send data or request resource
synchronization.

served transaction program (TP). In APPC/MVS, a
transaction program that is processed by an APPC/MVS
server, rather than by a partner TP that has been
scheduled by a transaction scheduler.

server. A functional unit that provides shared services
to workstations over a networks; for example, a file
server, a print server, a mail server. See also
APPC/MVS server.

session. A logical connection between two logical
units that can be activated, tailored to provide various
protocols, and deactivated as requested.

shell, multi-trans. See multi-trans shell.

shell, test. See test shell.

side information. A collection of system-defined
values for transaction programs whose partners call
them by symbolic destination names
(sym_dest_names). When a transaction program calls

Glossary

Glossary F-5

its partner by a sym_dest_name, APPC uses the
associated values to establish a conversation between
them.

SJF. See scheduler JCL facility.

SNA. See Systems Network Architecture

SNA service transaction program. An IBM-supplied
transaction program running in an LU that provides
utility services to application transaction programs or
that manages LUs.

SPI. See systems programming interface.

SSCP. See system services control point.

SSI. See subsystem interface.

standard. The standard TP_Schedule_Type for
APPC/MVS. TPs that are scheduled as standard are
initialized and terminated for each inbound conversation.
Contrast with multi-trans.

standard transaction program. See transaction
program.

state. See conversation state.

state transition. The act of moving from one
conversation state to another.

subarea. A portion of an SNA network that consists of
a subarea node, and any attached links and peripheral
nodes.

subordinate address space. An address space,
managed by a transaction scheduler, in which a
transaction program runs.

subsystem interface. The subsystem interface (SSI)
is the means by which MVS system routines request
services of the master subsystem, a job entry
subsystem, or any subsystem defined to MVS through
the subsystem definition process.

symbolic destination name. A variable that specifies
the symbolic name of the destination LU and partner
program, as well as the mode name for the session
carrying the conversation. The symbolic destination
name is provided by the transaction program and points
to an entry in the side information.

Synchronous Data Link Control. A discipline for
managing synchronous, code-transparent, serial-by-bit,
information transfer over a link. SDLC conforms to
subsets of the Advanced Data Communication Control
Procedures (ADCCP) of the American National
Standards Institute and High-level Data Link Control
(HDLC) of the International Standards Organization.

sync point. An intermediate or end point during
processing of a transaction at which an update or
modification to one or more of the transaction’s

protected resources is logically complete and error free.
Synonymous with synchronization point, commit point,
and point of consistency.

sync point manager (SPM). The component of the
node that implements two-phase commit and
resynchronization processing. In an MVS system, the
component is RRS.

SYSOUT. A system output stream; also, an indicator
used in data definition statements to signify that a data
set is to be written on a system output unit.

sysplex. A sysplex (systems complex) is the set of
one or more MVS systems that is given an XCF sysplex
name and in which programs in the systems can then
use XCF services.

system base LU. A logical unit that is the default LU
for outbound work requests from MVS programs (TSO/E
users, started tasks, and other work) that are not
associated with a scheduler or an LU. The system base
LU is either:

v An LU defined with the NOSCHED and BASE
parameters, or

v If a base NOSCHED LU is not defined, the LU
defined as the base LU for the APPC/MVS
transaction scheduler.

System Display and Search Facility. The System
Display and Search Facility is a program product that
acts as a system management aid allowing users to
efficiently analyze and control the operation of an
MVS/JES2-based system.

system services control point. A focal point within an
SNA network for managing the configuration,
coordinating network operator and problem
determination requests, and providing directory services
and other session services for end users of a network.
Multiple SSCPs, cooperating as peers with one another,
can divide the network into domains of control, with
each SSCP having a hierarchical control relationship to
the physical units and logical units within its own
domain.

Systems Network Architecture (SNA). A description
of the logical structure, formats, protocols, and
operational sequences for transmitting information units
through, and controlling the configuration and operation
of networks.

systems programming interface (SPI). Provides
languages, commands and calls that allow the
development of applications that are more easily
integrated and moved across multiple environments.

T
telecommunication link. A physical medium, such as
a wire or microwave beam, that is used to transmit data.

Glossary

F-6 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

test shell. A program that sets up an environment to
test transaction programs in its own address space,
using APPC/MVS Test services. The TSO/E TEST
command is an example of a test shell.

TP. See transaction program.

TP instance. A copy of a transaction program (TP) on
MVS, scheduled and initiated in response to an inbound
allocate request. A TP instance differs from a TP in that
a TP is a program using communication functions and a
TP instance is the actual processing of those functions
in MVS. Multiple instances of the same TP can run
simultaneously, each in response to a separate request
and on behalf of a different user.

See also TP_ID.

TP message log. A log that contains runtime
messages for a transaction program. The parameters
that define the TP message log are in the program’s TP
profile and in an ASCHPMxx parmlib member.

TP profile. The information required to establish the
environment for and attach a transaction program on
MVS, in response to an inbound allocate request for
that transaction program.

TP_ID. Transaction Program Identifier: a unique
8-character token that APPC/MVS assigns to each
instance of a transaction program. When multiple
instances of a transaction program are running
simultaneously, they have the same transaction program
name, but each has a unique TP_ID.

TP_Schedule_Type. A type of transaction program,
based on attributes provided by the transaction
programmer. Those attributes can influence the
performance of the transaction program, and must be
reflected in the TP profile. For more information about
specific TP_Schedule_Types in APPC/MVS, see
standard and multi_trans.

transaction. A unit of work performed by one or more
transaction programs, involving a specific set of input
data and initiating a specific process or job.

transaction initiator. A program that runs in a
subordinate address space of the APPC/MVS
transaction scheduler and initiates an APPC transaction
program in response to an inbound request.

transaction program (TP). A program used for
cooperative transaction processing within an SNA
network. For APPC/MVS, any program on MVS that
issues APPC/MVS or CPI Communication calls, or is
scheduled by the APPC/MVS transaction scheduler.

transaction scheduler. A scheduler program that is
responsible for job management of incoming work
requests from cooperative transaction programs. The
default transaction scheduler for APPC/MVS is the
APPC/MVS transaction scheduler; however, an

installation can define and use alternative transaction
schedulers for specific applications.

two-phase commit. (1) The protocol that permits
updates to protected resources to be committed or
backed out as a unit. During the first phase, resource
managers are asked if they are ready to commit. If all
resource managers respond positively, they are asked
to commit their updates. Otherwise, the resource
managers are asked to back out their updates. (2) The
protocols used by the sync point manager to accomplish
a commit operation.

U
unit of recovery. A sequence of operations within a
unit of work between sync points.

unit_of_work_id. An 8-character ID assigned by a
transaction scheduler to an inbound allocate request.
The APPC/MVS transaction scheduler uses this value
as the job ID when the inbound TP is initiated on MVS.

unprotected conversation. An LU 6.2 conversation
that has a synchronization level of none or confirm. If
conversation errors or failures occur, the resources used
by the application might be in inconsistent states.
Contrast with protected conversation.

userid. (1) A symbol identifying a system user. (2) A
code that uniquely identifies a user to the system.

user token. A collection of identity and security
information that represents a user or a job. The token
contains a userid, groupid, security class, origin node,
and session type, where session type is TSO/E logon,
started task, batch job, operator, or trusted computing
base.

UTOKEN. See user token.

V
verb. The SNA term for a conversation function that
transaction programs can use to communicate with
each other through the LU 6.2 protocol boundary. The
SNA verbs provide similar functions but are
implemented differently on the different systems (MVS,
VM, OS/2 and OS/400) that support them. See also
communication call.

W
work_unit_identifier (WUID). See unit_of_work_id.

X
XCF. See cross-system coupling facility.

Glossary

Glossary F-7

Glossary

F-8 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Index

Numerics
00640 character set

contents A-1
01134 character set

contents A-1

A
abend codes

for Get_Event service 4-6
for Query_Allocate_Queue service 4-11
for Receive_Allocate service 4-17
for Register_For_Allocates service 4-25
for Set_Allocate_Queue_Attributes service 4-28
for Set_Allocate_Queue_Notification service 4-34
for Unregister_For_Allocates service 4-37

accounting considerations
for APPC/MVS servers 2-26

advanced server functions
description 2-12

allocate queue
creation 1-4, 2-2
maintained during interruptions 2-21
management 1-7
overview 1-4
size 2-13

allocate queue keep time
description 2-22

allocate_queue_keep_time parameter
on Set_Allocate_Queue_Attributes service 4-27

allocate_queue_oldest parameter
on Query_Allocate_Queue service 4-9

allocate queue service 2-2
allocate_queue_size parameter

on Query_Allocate_Queue service 4-9
allocate queue token 2-4

used to receive conversations 2-4
allocate_queue_token parameter

on Query_Allocate_Queue service 4-9
on Receive_Allocate service 4-13
on Register_For_Allocates service 4-23
on Set_Allocate_Queue_Attributes service 4-27
on Set_Allocate_Queue_Notification service 4-31
on Unregister_For_Allocates service 4-36

APPC/MVS allocate queue service
accounting considerations 2-26
call syntax 3-1
Get_Event service 2-20, 4-1
invocation details 3-1
overview 1-4
performance considerations 2-27
Query_Allocate_Queue service 2-13, 4-6
Receive_Allocate service 2-6, 4-11
Register_For_Allocates service 2-2, 4-18
Set_Allocate_Queue_Attributes service 2-21, 4-25
Set_Allocate_Queue_Notification service 2-14, 4-29
syntax 3-1

APPC/MVS allocate queue service (continued)
Unregister_For_Allocates service 2-10, 4-34
using 2-1

APPC/MVS server
APPCSERV class 2-4, 2-27
controlling access to client TP 2-4
creation 2-2
description 1-4
diagnosing problems 2-28
installation 2-27
multi-tasking models 2-23
processing

overview 1-6
registration 2-2
sample code C-1
security considerations 2-4
setting up security 2-27
using multiple servers 2-11

APPC/MVS server facilities
overview 1-3, 1-4
relation to client/server programming 1-3, 1-4

APPCSERV class 1-8
controls access to client TP 2-4
defining 2-27

assembler programming language
call syntax 3-2

asynchronous processing
using the notify_type parameter 2-2

ATBGTE2 service 2-20
ATBQAQ2 service 2-13
ATBRAL2 service 2-6
ATBRFA2 service 2-2
ATBSAN2 service 2-14
ATBSAQ2 service 2-21
ATBURA2 service 2-10

B
basic server functions

description 2-2

C
C programming language

call syntax 3-1
sample client program D-1
sample error handling routine E-1
sample header file E-1
sample server program C-1

call syntax
for allocate queue callable services 3-1

character set
used in APPC/MVS A-1

client program
sample code D-1

client/server programming
description 1-1

COBOL programming language
call syntax 3-1

© Copyright IBM Corp. 1993, 2001 X-1

conversation 2-9
conversation ID 2-8

returned by Receive_Allocate service 2-8
used by APPC/MVS server 2-8

conversation_ID parameter
on Receive_Allocate service 4-15

conversation mode name 2-8
returned by Receive_Allocate service 2-8

conversation type 2-8
returned by Receive_Allocate service 2-8

conversation_type parameter
on Receive_Allocate service 4-15

D
database token

used to define security access 2-4, 2-27
dbtoken 2-27
distributed applications

overview 1-1

E
ECB (event control block)

used with asynchronous services 2-2
event buffer 2-21

specifying 2-21
event_buffer_length parameter

on Get_Event service 4-4
event_buffer parameter

on Get_Event service 4-4
event_code parameter

on Get_Event service 4-3
on Set_Allocate_Queue_Notification service 4-32

event element
retrieving 2-20

event_element_size
on Get_Event service 4-5

event_get_type parameter
on Get_Event service 4-3

event notification
clean-up processing 2-20
effect of Unregister_For_Allocates service 2-21
event buffer

specifying 2-21
event element

retrieving 2-20
receiving notification 2-13, 2-14
specifying threshold 2-14

event_notification_type parameter
on Set_Allocate_Queue_Notification service 4-31

event_qualifier parameter
on Set_Allocate_Queue_Notification service 4-32

event queue
description 2-14

event threshold
description 2-14

event_timestamp parameter
on Get_Event service 4-4

F
filter parameter

partner LU 2-3
profile 2-3
search order 2-3
user ID 2-3

FORTRAN programming language
call syntax 3-1

G
Get_Attributes service

using 2-9
Get_Event service

reference information 4-1
using 2-20

H
high level language

C 3-1
FORTRAN 3-1
PL/I 3-1
REXX 3-1

I
inbound conversation

APPC/MVS processing
overview 1-5

processed by APPC/MVS server 1-3, 1-4
rejecting 2-9
server registration 2-2

J
JES services

used by APPC/MVS servers 2-2

K
keep time 2-22

L
last_rec_alloc_issued parameter

on Query_Allocate_Queue service 4-9
last_rec_alloc_returned parameter

on Query_Allocate_Queue service 4-10
local LU (logical unit) 2-5

restrictions 2-5
specifying on register request 2-5

local LU name
specified by APPC/MVS server 2-3

local_LU_name parameter
on Query_Allocate_Queue service 4-9
on Register_For_Allocates service 4-21

X-2 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

M
mode_name parameter

on Receive_Allocate service 4-15
multi-tasking servers 2-23

N
NOSCHED LU (logical unit) 1-8

defining 2-27
description 1-9
using 2-5

Notices ix
notify type 2-7

specified on Receive_Allocate request 2-7
notify_type parameter

on Get_Event service 4-3
on Query_Allocate_Queue service 4-8
on Receive_Allocate service 4-13
on Register_For_Allocates service 4-19
on Set_Allocate_Queue_Attributes service 4-27
on Set_Allocate_Queue_Notification service 4-30
on Unregister_For_Allocates service 4-35

P
partner LU 2-3
partner LU name 2-8

returned by Receive_Allocate service 2-8
used in server registration 2-3

partner_LU_name parameter
on Receive_Allocate service 4-15
on Register_For_Allocates service 4-21

performance considerations
for allocate queue services 2-27

PL/I programming language
call syntax 3-1

profile 2-3
returned by Receive_Allocate service 2-9
used in server registration 2-3

profile parameter
on Receive_Allocate service 4-16
on Register_For_Allocates service 4-23

Q
Query_Allocate_Queue service

reference information 4-6
using 2-13

R
reason_code parameter

on Get_Event service 4-5
on Query_Allocate_Queue service 4-10
on Receive_Allocate service 4-16
on Register_For_Allocates service 4-23
on Set_Allocate_Queue_Attributes service 4-28
on Set_Allocate_Queue_Notification service 4-33
on Unregister_For_Allocates service 4-36

Receive_Allocate service
allowing the request to wait 2-7

Receive_Allocate service (continued)
reference information 4-11
specifying the notify type 2-7
specifying the timeout value 2-7
using 2-6, 2-7

receive_allocate_type parameter
on Receive_Allocate service 4-14

Register_For_Allocates service
reference information 4-18
using 2-2

registration 1-4
Reject_Conversation service

using 2-9
rejecting conversations 2-9
resource management

using APPC/MVS servers 1-3
return_code parameter

on Get_Event service 4-5
on Query_Allocate_Queue service 4-10
on Receive_Allocate service 4-17
on Register_For_Allocates service 4-24
on Set_Allocate_Queue_Attributes service 4-28
on Set_Allocate_Queue_Notification service 4-33
on Unregister_For_Allocates service 4-36

REXX programming language
call syntax

for APPC/MVS service 3-1

S
search order

for filter parameters 2-3
security profile 2-9
server

defined 1-1
server registration

considerations 2-6
defined 1-4
overview 2-2
search order for filters 2-3
specifying filters 2-3

Set_Allocate_Queue_Attributes service
reference information 4-25
using 2-21

Set_Allocate_Queue_Notification service
reference information 4-29
using 2-14

side information
used for server registration 2-3

SRVERROR routine
sample code E-1

sym_dest_name parameter
on Register_For_Allocates service 4-20

symbolic destination name 2-3
used for server registration 2-3

symptom records
for APPC service failures B-5

sync_level parameter
on Receive_Allocate service 4-16

synchronization level 2-8
returned by Receive_Allocate service 2-8

Index X-3

T
threshold 2-14

timeout value

specified on Receive_Allocate request 2-7

timeout_value parameter

on Receive_Allocate service 4-14

TP name

defined to APPCSERV security class 2-4
specified by APPC/MVS server 2-3

TP_name_length parameter

on Query_Allocate_Queue service 4-9
on Register_For_Allocates service 4-21

TP_name parameter

on Query_Allocate_Queue service 4-9
on Register_For_Allocates service 4-21

TP profile

using a null data set 2-27

transaction program

characters used in name A-1

transaction scheduler

compared with APPC/MVS server 1-4

type A character set

contents A-1

U
Unregister_For_Allocates service

reference information 4-34
using 2-10

user ID 2-3

returned by Receive_Allocate service 2-9
used in server registration 2-3

user_ID parameter

on Receive_Allocate service 4-16
on Register_For_Allocates service 4-23

W
workload balancing

description 2-13

X-4 z/OS V1R1.0 MVS Writing Servers for APPC/MVS

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming:
Writing Servers
for APPC/MVS

Publication No. SA22-7620-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7620-00

SA22-7620-00

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7620-00

	Contents
	Figures
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information
	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Summary of Changes
	Chapter 1. Introduction
	Distributed Applications
	The Client/Server Model

	Overview
	APPC/MVS Server Facilities
	Resource Management
	Owning Inbound Conversations

	The Allocate Queue
	Creating an Allocate Queue
	APPC/MVS Inbound Processing
	Server Processing: An Overview
	Request Flow
	Managing Allocate Queues

	Server Initialization
	Special Considerations for Authorized Servers
	Related System Functions
	What the Application Programmer Provides
	What Your Installation Can Provide

	Chapter 2. Using Allocate Queue Services
	Using the Services Asynchronously
	Using JES Services
	The Basic Server Functions
	Creating An APPC/MVS Server
	Specifying Symbolic Destination Names
	Filtering Requests
	Receiving the Allocate Queue Token
	Securing Access to Client TPs
	For Which Local LUs Can a Server Register?
	Additional Considerations for Registering

	Receiving Inbound Conversations
	Specifying the Allocate Queue Token
	Allowing the Request to Wait
	Receiving the Conversation ID
	Other Outputs From Receive_Allocate
	Using the Get_Attributes Service
	Rejecting Conversations

	Unregistering For Allocate Requests
	Using Multiple Servers

	Advanced Server Functions
	Querying the Allocate Queue
	TP Name/Local LU name
	Other Information About the Allocate Queue

	Receiving Notification of Events
	Requesting Notification of Events
	Retrieving Event Elements

	Allowing the Allocate Queue to Persist
	Use of Unregister_For_Allocates

	Multi-Tasking Servers
	Model One — Empowerment
	Model Two — Management-Directed
	Model Three — Unmanaged
	General Considerations for Multi-Tasking Servers

	Managing Protected Conversations
	Accounting for Server Usage
	Tracking Server-Specific Resources through SMF
	Adding User Data to Accounting Records

	Performance Considerations for Allocate Queue Services
	Installing APPC/MVS Servers
	Diagnosing Problems with APPC/MVS Servers

	Chapter 3. Invocation Details for Allocate Queue Services
	Interface Definition Files (IDFs)
	Syntax and Linkage Conventions for Allocate Queue Services
	Linkage Conventions

	Parameter Description for Allocate Queue Services
	Required Modules
	Versions of Callable Services
	Interface Definition Files (IDFs) for APPC/MVS Services

	Chapter 4. APPC/MVS Allocate Queue Services
	Get_Event
	Environment for Get_Event
	Restrictions
	Input Register Information
	Output Register Information
	Syntax Format for Get_Event
	Parameters for Get_Event
	Abend Codes for Get_Event

	Query_Allocate_Queue
	Environment for Query_Allocate_Queue
	Restrictions
	Input Register Information
	Output Register Information
	Syntax Format for Query_Allocate_Queue
	Parameters for Query_Allocate_Queue
	Abend Codes for Query_Allocate_Queue

	Receive_Allocate
	Environment for Receive_Allocate
	Restrictions
	Input Register Information
	Output Register Information
	Syntax Format for Receive_Allocate
	Parameters for Receive_Allocate
	Abend Codes for Receive_Allocate

	Register_for_Allocates
	Environment for Register_For_Allocates
	Restrictions
	Input Register Information
	Output Register Information
	Syntax Format for Register_For_Allocates
	Parameters for Register_For_Allocates
	Abend Codes for Register_For_Allocates

	Set_Allocate_Queue_Attributes
	Environment for Set_Allocate_Queue_Attributes
	Restrictions
	Input Register Information
	Output Register Information
	Syntax Format for Set_Allocate_Queue_Attributes
	Parameters for Set_Allocate_Queue_Attributes
	Abend Codes for Set_Allocate_Queue_Attributes

	Set_Allocate_Queue_Notification
	Environment for Set_Allocate_Queue_Notification
	Restrictions
	Input Register Information
	Output Register Information
	Syntax Format for Set_Allocate_Queue_Notification
	Parameters for Set_Allocate_Queue_Notification
	Abend Codes for Set_Allocate_Queue_Notification

	Unregister_For_Allocates
	Environment for Unregister_For_Allocates
	Restrictions
	Input Register Information
	Output Register Information
	Syntax Format for Unregister_For_Allocates
	Parameters for Unregister_For_Allocates
	Abend Codes for Unregister_For_Allocates

	Appendix A. Character Sets
	Appendix B. Explanation of Return and Reason Codes
	Return Codes
	Reason Codes
	Symptom Records for APPC Service Failures

	Appendix C. Sample APPC/MVS Server
	Appendix D. Sample Client Program
	Appendix E. Sample Error Routine and Header File
	Header File

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

